高级搜索

三阴性乳腺癌的免疫联合治疗研究进展

王华, 胡晓磊, 李星宇, 戴映

王华, 胡晓磊, 李星宇, 戴映. 三阴性乳腺癌的免疫联合治疗研究进展[J]. 肿瘤防治研究, 2022, 49(10): 996-1002. DOI: 10.3971/j.issn.1000-8578.2022.22.0272
引用本文: 王华, 胡晓磊, 李星宇, 戴映. 三阴性乳腺癌的免疫联合治疗研究进展[J]. 肿瘤防治研究, 2022, 49(10): 996-1002. DOI: 10.3971/j.issn.1000-8578.2022.22.0272
WANG Hua, HU Xiaolei, LI Xingyu, DAI Ying. Advances in Combined Immunotherapy for Triple Negative Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 996-1002. DOI: 10.3971/j.issn.1000-8578.2022.22.0272
Citation: WANG Hua, HU Xiaolei, LI Xingyu, DAI Ying. Advances in Combined Immunotherapy for Triple Negative Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 996-1002. DOI: 10.3971/j.issn.1000-8578.2022.22.0272

三阴性乳腺癌的免疫联合治疗研究进展

基金项目: 

安徽省自然科学基金青年基金 2008085QH424

广东省基础与应用基础研究基金 2019A1515011331

国家自然科学联合基金 U21A20375

详细信息
    作者简介:

    王华  博士,教授,主任医师,博士生导师。安徽医科大学第一附属医院肿瘤内科科研副主任兼肿瘤免疫病区主任。国家百千万人才工程人选,国家自然科学基金委杰出青年,中国免疫学会肿瘤免疫与生物治疗分会委员。2007年至2014年美国国立卫生研究院(NIH)博士后。主持国家自然科学基金多项。2015年获安徽省青年科技奖和吴孟超青年奖,2019年获安徽省自然科学奖一等奖。在HepatologyJournal of HepatologyGastroenterology和The American Journal of Pathology等杂志上发表论文147篇。
    王华(1978-),男,博士,教授,主任医师,主要从事肿瘤的免疫治疗研究,E-mail: wanghua@ahmu.edu.cn

  • 中图分类号: R737.9

Advances in Combined Immunotherapy for Triple Negative Breast Cancer

Funding: 

Anhui Natural Science Funding for Young Scientist 2008085QH424

Guangdong Basic and Applied Basic Research Foundation 2019A1515011331

Joint Funds of the National Natural Science Foundation of China U21A20375

  • 摘要:

    三阴性乳腺癌(TNBC)为一种预后较差的分子亚型,传统治疗手段有限;该亚型的免疫原性强,且肿瘤微环境中肿瘤浸润淋巴细胞水平高,为免疫治疗的开展提供了基石。免疫治疗联合化疗的疗效优于单药免疫治疗,且在晚期一线TNBC的有效率高于既往多线治疗组。联合其他治疗包括抗肿瘤血管生成、免疫调节剂和PARP抑制剂的尝试亦取得初步疗效。本文就三阴性乳腺癌的免疫治疗单药及联合治疗的疗效、安全性及未来的挑战进行综述。

     

    Abstract:

    The triple-negative breast cancer has a relatively poor prognosis with limited therapeutic options. This subtype is highly immunogenetic and exhibits rich tumor infiltrated lymphocytes in the tumor microenvironment. However, immunotherapy alone is less effective as compared with the doublet of chemotherapy and immunotherapy in TNBC. The efficacy in early recurrence settings of mTNBC exceeds that in heavily treated subgroups. Meanwhile, other combinations including anti-angiogenesis, immune modulators, and PARPi elicit a promising effect. Herein, this paper reviews the progress of efficacy, safety, and the outlook in the immunotherapy of TNBC disease.

     

  • Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    王华:文稿策划、撰写及审阅
    胡晓磊:文稿修改和资料提供
    李星宇:资料查询
    戴映:提纲设计、文稿修改
  • [1]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [2]

    Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22. doi: 10.1186/s40880-019-0368-6

    [3]

    Waks AG, Winer EP. Breast Cancer Treatment: A Review[J]. JAMA, 2019, 321(3): 288-300. doi: 10.1001/jama.2018.19323

    [4] 韩逸群, 王佳玉, 徐兵河. 晚期三阴性乳腺癌免疫检查点抑制剂联合靶向治疗进展[J]. 中华乳腺病杂志(电子版), 2020, 14(5): 261-265. doi: 10.3877/cma.j.issn.1674-0807.2020.05.001

    Han YQ, Wang JY, Xu BH. Immune Checkpoint Inhibitors Plus Targeted Therapy for Advanced Triple Negative breast cancer[J]. Zhonghua Ru Xian Bing Za Zhi(Dian Zi Ban), 2020, 14(5): 261-265. doi: 10.3877/cma.j.issn.1674-0807.2020.05.001

    [5]

    Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67. doi: 10.1182/blood-2017-06-741033

    [6]

    Hosseini A, Gharibi T, Marofi F, et al. CTLA-4: From mechanism to autoimmune therapy[J]. Int Immunopharmacol, 2020, 80: 106221. doi: 10.1016/j.intimp.2020.106221

    [7]

    Emens LA. Breast Cancer Immunotherapy: Facts and Hopes[J]. Clin Cancer Res, 2018, 24(3): 511-520. doi: 10.1158/1078-0432.CCR-16-3001

    [8] 薛静, 王浩. 乳腺癌免疫治疗的研究进展[J]. 中华乳腺病杂志(电子版), 2018, 12(1): 43-49. doi: 10.3877/cma.j.issn.1674-0807.2018.01.009

    Xue J, Wang H. Reseach progress of immnocherapy on breast cancer[J]. Zhonghua Ru Xian Bing Za Zhi(Dian Zi Ban), 2018, 12(1): 43-49. doi: 10.3877/cma.j.issn.1674-0807.2018.01.009

    [9]

    Santa-Maria CA, Kato T, Park JH, et al. A pilot study of durvalumab and tremelimumab and immunogenomic dynamics in metastatic breast cancer[J]. Oncotarget, 2018, 9(27): 18985-18996. doi: 10.18632/oncotarget.24867

    [10]

    Page DB, Yuan J, Redmond D, et al. Deep Sequencing of T-cell Receptor DNA as a Biomarker of Clonally Expanded TILs in Breast Cancer after Immunotherapy[J]. Cancer Immunol Res, 2016, 4(10): 835-844. doi: 10.1158/2326-6066.CIR-16-0013

    [11]

    Kooshkaki O, Derakhshani A, Hosseinkhani N, et al. Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials[J]. Int J Mol Sci, 2020, 21(12): 4427-4454. doi: 10.3390/ijms21124427

    [12]

    Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1Checkpoint[J]. Immunity, 2018, 48(3): 434-452. doi: 10.1016/j.immuni.2018.03.014

    [13]

    Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499. doi: 10.1038/nature22396

    [14]

    Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease[J]. Nat Rev Clin Oncol, 2016, 13(11): 674-690. doi: 10.1038/nrclinonc.2016.66

    [15]

    Emens LA, Kok M, Ojalvo LS. Targeting the programmed cell death-1 pathway in breast and ovarian cancer[J]. Curr Opin Obstet Gynecol, 2016, 28(2): 142-147. doi: 10.1097/GCO.0000000000000257

    [16]

    Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer[J]. N Engl J Med, 2022, 387(3): 217-226. doi: 10.1056/NEJMoa2202809

    [17]

    Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer[J]. N Engl J Med, 2018, 379(22): 2108-2121. doi: 10.1056/NEJMoa1809615

    [18]

    Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phaseⅡ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3): 397-404. doi: 10.1093/annonc/mdy517

    [19]

    Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phaseⅡ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3): 405-411. doi: 10.1093/annonc/mdy518

    [20]

    Emens LA, Cruz C, Eder JP, et al. Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients With Metastatic Triple-Negative Breast Cancer: A Phase 1 Study[J]. JAMA Oncol, 2019, 5(1): 74-82. doi: 10.1001/jamaoncol.2018.4224

    [21]

    Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phaseⅡ trial[J]. J Immunother Cancer, 2020, 8(1): e000696. doi: 10.1136/jitc-2020-000696

    [22]

    Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021, 397(10286): 1750-1769. doi: 10.1016/S0140-6736(20)32381-3

    [23]

    Szebeni GJ, Vizler C, Kitajka K, et al. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters[J]. Mediators Inflamm, 2017, 2017: 9294018.

    [24]

    Pucilowska J. Safety and efficacy of pembrolizumab (pembro) plus capecitabine (cape) in metastatic triple negative breast cancer (mTNBC)[J]. J Clin Oncol, 2018, 36(15_suppl).

    [25]

    Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study[J]. Breast Cancer Res Treat, 2018, 167(3): 671-686. doi: 10.1007/s10549-017-4537-5

    [26]

    Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phaseⅡ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3): 397-404. doi: 10.1093/annonc/mdy517

    [27]

    Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial[J]. Lancet, 2020, 396(10257): 1090-1100. doi: 10.1016/S0140-6736(20)31953-X

    [28]

    Loibl S, Untch M, Burchardi N, et al. A randomised phaseⅡ study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study[J]. Ann Oncol, 2019, 30(8): 1279-1288. doi: 10.1093/annonc/mdz158

    [29]

    Foldi J, Silber A, Reisenbichler E, et al. Neoadjuvant durvalumab plus weekly nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in triple-negative breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 9. doi: 10.1038/s41523-021-00219-7

    [30]

    Li Q, Wang Y, Jia W, et al. Low-Dose Anti-Angiogenic Therapy Sensitizes Breast Cancer to PD-1 Blockade[J]. Clin Cancer Res, 2020, 26(7): 1712-1724. doi: 10.1158/1078-0432.CCR-19-2179

    [31]

    Loi S, Drubay D, Adams S, et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers[J]. J Clin Oncol, 2019, 37(7): 559-569. doi: 10.1200/JCO.18.01010

    [32]

    Maruhashi T, Sugiura D, Okazaki IM, et al. LAG-3: from molecular functions to clinical applications[J]. J Immunother Cancer, 2020, 8(2): e001014. doi: 10.1136/jitc-2020-001014

    [33]

    Burugu S, Gao D, Leung S, et al. LAG-3+ tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+ tumors[J]. Ann Oncol, 2017, 28(12): 2977-2984. doi: 10.1093/annonc/mdx557

    [34]

    Saleh R, Toor SM, Khalaf S, et al. Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4(+) T Cells[J]. Vaccines (Basel), 2019, 7(4): 149. doi: 10.3390/vaccines7040149

    [35]

    Andrews LP, Marciscano AE, Drake CG, et al. LAG3 (CD223) as a cancer immunotherapy target[J]. Immunol Rev, 2017, 276(1): 80-96. doi: 10.1111/imr.12519

    [36]

    Gestermann N, Saugy D, Martignier C, et al. LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures[J]. Oncoimmunology, 2020, 9(1): 1736792. doi: 10.1080/2162402X.2020.1736792

    [37]

    Zhou J, Nefedova Y, Lei A, et al. Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells[J]. Semin Immunol, 2018, 35: 19-28. doi: 10.1016/j.smim.2017.12.004

    [38]

    Long J, Hu Z, Xue H, et al. Vascular endothelial growth factor (VEGF) impairs the motility and immune function of human mature dendritic cells through the VEGF receptor 2-RhoA-cofilin1 pathway[J]. Cancer Sci, 2019, 110(8): 2357-2367. doi: 10.1111/cas.14091

    [39]

    Gallyas F Jr, Sumegi B. Mitochondrial Protection by PARP Inhibition[J]. Int J Mol Sci, 2020, 21(8): 2767. doi: 10.3390/ijms21082767

    [40]

    Chopra N, Tovey H, Pearson A, et al. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer[J]. Nat Commun, 2020, 11(1): 2662. doi: 10.1038/s41467-020-16142-7

    [41]

    Jiao S, Xia W, Yamaguchi H, et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression[J]. Clin Cancer Res, 2017, 23(14): 3711-3720. doi: 10.1158/1078-0432.CCR-16-3215

    [42]

    Lee JM, Cimino-Mathews A, Peer CJ, et al. Safety and Clinical Activity of the Programmed Death-Ligand 1 Inhibitor Durvalumab in Combination With Poly (ADP-Ribose) Polymerase Inhibitor Olaparib or Vascular Endothelial Growth Factor Receptor 1-3 Inhibitor Cediranib in Women's Cancers: A Dose-Escalation, PhaseⅠ Study[J]. J Clin Oncol, 2017, 35(19): 2193-2202. doi: 10.1200/JCO.2016.72.1340

    [43]

    Higuchi T, Flies DB, Marjon NA, et al. CTLA-4 Blockade Synergizes Therapeutically with PARP Inhibition in BRCA1-Deficient Ovarian Cancer[J]. Cancer Immunol Res, 2015, 3(11): 1257-1268. doi: 10.1158/2326-6066.CIR-15-0044

    [44]

    Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study[J]. Lancet Oncol, 2020, 21(9): 1155-1164. doi: 10.1016/S1470-2045(20)30324-7

    [45]

    Vinayak S, Tolaney SM, Schwartzberg LS, et al. TOPACIO/Keynote-162: Niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial[J]. J Clin Oncol, 2018, 36(15_suppl): 1011. doi: 10.1200/JCO.2018.36.15_suppl.1011

    [46]

    McGuinness JE, Kalinsky K. Antibody-drug conjugates in metastatic triple negative breast cancer: a spotlight on sacituzumabgovitecan, ladiratuzumabvedotin, and trastuzumab deruxtecan[J]. Expert Opin Biol Ther, 2021, 21(7): 903-913. doi: 10.1080/14712598.2021.1840547

    [47] 袁芃. 第42届圣安东尼奥乳腺癌研讨会报道: 三阴性乳腺癌[J]. 中华乳腺病杂志(电子版), 2020, 14(2): 73-77. doi: 10.3877/cma.j.issn.1674-0807.2020.02.003

    Yuan P. Reports on Triple Negative Breast Cancer in the 42nd San Antonio Breast Cancer Symposium[J]. Zhonghua Ru Xian Bing Za Zhi(Dian Zi Ban), 2020, 14(2): 73-77. doi: 10.3877/cma.j.issn.1674-0807.2020.02.003

    [48]

    Mekala JR, Naushad SM, Ponnusamy L, et al. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer[J]. Gene, 2018, 641: 248-258. doi: 10.1016/j.gene.2017.10.018

    [49]

    Shu S, Wu HJ, Ge JY, et al. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer[J]. Mol Cell, 2020, 78(6): 1096-1113. e1098. doi: 10.1016/j.molcel.2020.04.027

    [50]

    Buisseret L, Pommey S, Allard B, et al. Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase Ⅲ clinical trial[J]. Ann Oncol, 2018, 29(4): 1056-1062. doi: 10.1093/annonc/mdx730

    [51]

    Semiglazov V, Tseluiko A, Kudaybergenova A, et al. Immunology and immunotherapy in breast cancer[J]. Cancer Biol Med, 2022, 19(5): 609-618. doi: 10.20892/j.issn.2095-3941.2021.0597

    [52]

    Yi M, Jiao D, Xu H, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors[J]. Mol Cancer, 2018, 17(1): 129. doi: 10.1186/s12943-018-0864-3

    [53]

    Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer[J]. Cancer Metastasis Rev, 2021, 40(2): 537-547. doi: 10.1007/s10555-021-09972-4

计量
  • 文章访问数:  2520
  • HTML全文浏览量:  2879
  • PDF下载量:  1703
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-05-11
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭