高级搜索

中老年结直肠息肉患者的临床病理特征及腺瘤性息肉的危险因素分析

程芮, 龚芮, 姜维, 张澍田

程芮, 龚芮, 姜维, 张澍田. 中老年结直肠息肉患者的临床病理特征及腺瘤性息肉的危险因素分析[J]. 肿瘤防治研究, 2025, 52(1): 19-24. DOI: 10.3971/j.issn.1000-8578.2025.24.0746
引用本文: 程芮, 龚芮, 姜维, 张澍田. 中老年结直肠息肉患者的临床病理特征及腺瘤性息肉的危险因素分析[J]. 肿瘤防治研究, 2025, 52(1): 19-24. DOI: 10.3971/j.issn.1000-8578.2025.24.0746
CHENG Rui, GONG Rui, JIANG Wei, ZHANG Shutian. Clinicopathological Characteristics of Middle-Aged and Elderly Patients with Colorectal Polyps and Risk Factors of Adenomatous Polyps[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 19-24. DOI: 10.3971/j.issn.1000-8578.2025.24.0746
Citation: CHENG Rui, GONG Rui, JIANG Wei, ZHANG Shutian. Clinicopathological Characteristics of Middle-Aged and Elderly Patients with Colorectal Polyps and Risk Factors of Adenomatous Polyps[J]. Cancer Research on Prevention and Treatment, 2025, 52(1): 19-24. DOI: 10.3971/j.issn.1000-8578.2025.24.0746

中老年结直肠息肉患者的临床病理特征及腺瘤性息肉的危险因素分析

基金项目: 国家重点研发计划(2022YFC3602100);首都医科大学附属北京友谊医院院启动课题(YYZZ202210)
详细信息
    作者简介:

    程芮,女,博士,副主任医师,主要从事消化道早癌及癌前病变的诊治,ORCID: 0000-0003-3598-5623

    张澍田: 主任医师,教授,博士生导师,首都医科大学附属北京友谊医院院长,国家杰出医师,国家临床医学研究创新战略联盟秘书长,国家消化系统疾病临床医学研究中心主任,消化健康全国重点实验室主任,中华医学会常务理事,中国医师协会常务理事,中国医师协会消化医师分会会长,世界华人消化医师协会会长,世界消化内镜学会指导委员会委员,亚太消化内镜学会委员等。主要致力于消化内镜介入(微创)诊断与治疗以及消化系癌前疾病癌变的分子机制、干预措施及早癌的规范化诊治全链条研究,作为第一责任人承担国家“863”计划、“973”计划、科技部重大专项、十四五主动健康项目、国家自然基金重大科研仪器研制专项、国家科技支撑计划等项目20余项。将人工智能辅助诊断、外泌体液体活检、OCT及3D成像等交叉学科技术与现有的消化道肿瘤筛查诊断技术融合创新,在促进我国消化系统肿瘤诊疗技术创新与内镜技术国产化等方向取得了一系列突破性进展。在Gut、AJG、J Extracell Vesicles、JAMA Surg、Oncogene等权威期刊发表SCI论文120余篇,获批专利多项,牵头制定临床诊疗、内镜规范化操作指南7部 。

    通信作者:

    张澍田,男,博士,主任医师,教授,主要从事消化内镜介入(微创)诊断与治疗以及消化系统早癌的规范化诊治全链条研究,E-mail: zhangst@ccmu.edu.cn,ORCID: 0000-0003-2356-4397

  • 中图分类号: R735.3

Clinicopathological Characteristics of Middle-Aged and Elderly Patients with Colorectal Polyps and Risk Factors of Adenomatous Polyps

Funding: The National Key Research and Development Program of China (No. 2022YFC3602100); Beijing Friendship Hospital Affiliated to Capital Medical University Launches Project (No. YYZZ202210)
More Information
  • 摘要:
    目的 

    研究结直肠腺瘤性息肉发生相关的危险因素,为结直肠癌早期筛查及诊疗提供依据。

    方法 

    选取我院行结肠镜检查发现的1 527例结直肠息肉患者为研究对象。收集患者社会人口学、生活饮食习惯、临床病史、实验室化验及内镜特征等资料,对比在不同病理类型息肉组间的差异。根据病理类型将结直肠息肉分为腺瘤组和非腺瘤组,进行多因素Logistic回归分析,探究上述因素对结直肠腺瘤发生的影响。

    结果 

    多因素Logistic回归分析显示,年龄更大(OR: 1.024, 95%CI: 1.001~1.048, P=0.044)、体重指数更高(OR: 1.046, 95%CI: 1.008~1.087, P=0.020)、吸烟史(OR: 1.493, 95%CI: 1.035~2.158, P=0.032)为结直肠腺瘤发生的独立危险因素。认知功能更好的患者发生结直肠腺瘤的风险低于认知功能较差者(OR: 0.929, 95%CI: 0.871~0.984, P=0.017)。在息肉病理特征方面,病变部位在直肠(OR: 0.396, 95%CI: 0.229~0.677, P=0.001)、平坦型(OR: 0.531, 95%CI: 0.342~0.810, P=0.004)或侧向发育型(OR: 0.306, 95%CI: 0.135~0.698, P=0.005)的息肉更可能为非腺瘤性息肉。随着息肉大小的增加,发生腺瘤性病理改变的可能性显著增加(OR: 1.063, 95%CI: 1.035~1.095, P<0.001)。

    结论 

    年龄更大、体重指数更高、吸烟、病变直径更大的结直肠息肉患者病理为腺瘤的风险更高,而认知功能更好、病变位于直肠、形态为平坦型或侧向发育型结直肠息肉患者病理更可能为非腺瘤性。

     

    Abstract:
    Objective 

    To determine the risk factors related to the occurrence of colorectal adenomatous polyps and provide a basis for early screening, diagnosis, and treatment of colorectal cancer.

    Methods 

    A total of 1 527 cases of colorectal polyps detected by colonoscopy were selected as the research subjects. Data on sociodemographic information, lifestyle and dietary habits, clinical history, laboratory tests, and endoscopic characteristics were collected. The patients were divided into adenoma and non-adenoma groups based on the pathological type. Multivariate logistic regression analysis was conducted to explore the influence of the above factors on the occurrence of colorectal adenoma.

    Results 

    Old age (OR: 1.024, 95%CI: 1.001-1.048, P=0.044), high body mass index (OR: 1.046, 95%CI: 1.008-1.087, P=0.020), and a history of smoking (OR: 1.493, 95%CI: 1.035-2.158, P=0.032) were independent risk factors for the occurrence of colorectal adenoma. Patients with better cognitive function had a lower risk of developing colorectal adenoma than those with poorer cognitive function (OR: 0.929, 95%CI: 0.871-0.984, P=0.017). Polyps located in the rectum (OR: 0.396, 95%CI: 0.229-0.677, P=0.001) and those of flat type (OR: 0.531, 95%CI: 0.342-0.810, P=0.004) or laterally spreading type (OR: 0.306, 95%CI: 0.135-0.698, P=0.005) were more likely to be non-adenomatous polyps. The possibility of adenomatous pathological changes increased significantly with an increase in polyp size (OR: 1.063, 95%CI: 1.035-1.095, P<0.001).

    Conclusion 

    Old age, high body mass index, smoking history, and large polyp diameters are related with a high risk of adenoma in the patients with colorectal polyps. Patients who have satisfactory cognitive function, polyps located in the rectum and polyps of flat type or laterally spreading type are likely to have non-adenoma.

     

  • 肝癌是全球最常见的恶性肿瘤之一,发病率全球排名第五,男性死亡率排名第二[1]。尽管早期肝癌患者可行肿瘤切除、肝移植等手术治疗,但由于供体短缺等原因,大多数患者仍不适用。很多患者被诊断为疾病晚期,因此错过了接受外科手术等根治性治疗的机会。此外,对于接受手术切除的患者,复发仍然是一个主要问题,而且50%复发的患者在一年内死亡[2-3]。由于复杂的病因及高复发性使肝癌预后预测具有挑战性,考虑到肝癌治疗策略有限,因此还需要开发新的预后模型。

    随着微阵列技术和高通量测序技术的发展,人们现在能够通过生物信息学分析来识别与肿瘤预后和进展相关的关键基因,并在此基础上发现了许多预后标志物,建立了各种预后模型[4-5]。铜离子参与体内众多生化反应,当体内铜离子过高时,会对细胞产生毒性,改变氧化还原状态。有研究表明,与健康人群相比,癌症患者的血清铜水平升高,并与疾病的严重程度和对治疗的反应相关[6]。最近,一种不同于已知细胞死亡机制的新型细胞死亡方式引起人们广泛关注,它主要通过铜离子与线粒体中的三羧酸循环中的脂酰化成分直接结合,从而导致脂酰化蛋白质聚集和随后的铁硫簇蛋白下调,最终使得蛋白质毒性应激并导致细胞死亡[7-8],并且从中发现了几个与铜死亡相关的基因,这可能为预测肝癌患者的预后提供新的策略。

    本研究采用生物信息学的方法分析铜死亡相关基因在肝癌与正常组织中的差异表达,利用聚类分析和LASSO回归分析筛选出与预后相关的基因并构建风险预测模型,以期为肝癌患者早期诊断和预后评估提供参考依据。

    从肿瘤基因组图谱(TCGA)数据库(https://portal.gdc.cancer.gov/)下载了371例肝癌患者肿瘤组织和50例正常肝组织的RNA测序(RNA-seq)数据集和临床资料。采用R软件“Limma”包对转录组基因表达谱进行预处理。临床资料主要包括患者的年龄、性别、肿瘤分级、肿瘤分期、生存时间和生存状态等信息。此外,为了减少该分析中潜在的统计偏差,排除了生存时间未知且无生存状态的患者。

    选择目前已知的10个铜死亡相关基因,提取这10个基因的表达矩阵,并使用Wilcoxon秩和检验进行组间差异表达分析。利用“corrplot”软件包进行相关性分析,基于“pheatmap”软件包绘制热图。

    移除50例正常组织样本,使用“Consensus-ClusterPlus”软件包对肝癌患者进行一致性聚类分析,将其分成Cluster1和Cluster2组,分析不同的临床特征和总体生存率在两组聚类中是否存在差异。

    使用“survival”软件包进行单因素Cox回归分析筛选预后相关基因,使用LASSO回归分析以消除假阳性预后相关铜死亡基因,使用“glmnet”和“survival”软件包,计算基因之间的相关回归系数,根据回归系数加权建立肝癌预后风险评估公式:

    公式中n指基因数量,Expi表示每个基因的表达量,Coei表示回归系数。根据不同样品中特征基因的表达,为每例患者分配风险评分,根据评分中位值将患者分为高风险组和低风险组,通过Kaplan-Meier曲线和计算ROC曲线下的面积(AUC)评估风险评分的预后意义和诊断效能。将性别、年龄、TNM分期、组织学分级和风险评分纳入单因素和多因素Cox回归中,分析多种临床特征干扰下风险评分的预后独立性,并通过“forestplot”软件包的森林图可视化每个变量的P值、风险比(HR)和95%CI

    为了获得与疾病发生发展所涉及的生物学功能和信号通路,使用仙桃学术平台(https://www.xiantao.love/)进行注释和可视化,对5个铜死亡相关基因进行基因本体(GO)分析和京都基因组百科全书(KEGG)通路分析。

    采用R语言(4.1.3)软件进行统计分析。采用Wilcoxon秩和检验进行两组之间基因差异分析。Spearman相关检验分析基因表达间的相关性。Kaplan-Meier法绘制生存曲线。ROC曲线评估预后模型的敏感度和特异性。P < 0.05为差异有统计学意义。

    在TCGA队列中,肝癌组织和正常组织样本之间10个铜死亡相关基因的表达差异均有统计学意义(P < 0.05),其中FDX1在肝癌组织中下调,其余9个基因表达上调,见图 1A~B。相关性分析显示,大部分铜死亡相关基因都呈正相关,其中LIPT1与MTF1呈现最强正相关(r=0.46);而FDX1与CDKN2A(r=-0.24),FDX1与LIPT1(r=-0.2)呈显著负相关,见图 1C

    图  1  铜死亡相关基因在肝癌中的表达水平及其相关性
    Figure  1  Expression level and correlation of cuprotosis-related genes in liver cancer
    A: expression levels of 10 cuprotosis-related genes marked with an asterisk in the heat map were was not significant, *: P < 0.05, **: P < 0.01, ***: P < 0.001); B: violin plot of the expression levels of 10 cuprotosis-related genes in liver cancer and normal control samples; C: Spearman correlation analysis of 10 genes related to cuprotosis in liver cancer samples.

    根据铜死亡相关基因的表达谱,对TCGA数据库中371例肝癌样本进行聚类分析。当k=2时,肝癌样本组内相关性最高,组间相关性较低,聚类效果稳定,确定了2个肝癌亚型,见图 2A~C。Cluster1的生存时间明显短于Cluster2(P < 0.05),见图 2D。此外,Cluster1与诊断时较高的分期(P < 0.01)和较高的死亡状态(P < 0.05)显著相关,而与肿瘤分级、年龄、性别无关(P > 0.05),见图 2E

    图  2  一致性聚类分析铜死亡相关基因
    Figure  2  Consistent cluster analysis of cuprotosis-related genes
    A: k=2 consistency clustering matrix; B: k=2–9 consistent clustering cumulative distribution function (CDF); C: The relative change in area under CDF curve when k=2–9; D: The overall survival rate in the clustering of the two groups; E: the relationship between different clustering and clinicopathology; P values were marked with an asterisk, **: P < 0.01.

    移除所有生存时间未知且无生存状态的样本后,共有365例肝癌样本与具有完整生存信息的相应患者匹配。将所有铜死亡相关基因纳入单因素Cox回归模型中,筛选得到5个基因(LIPT1、DLAT、MTF1、GLS、CDKN2A)均为HR > 1(且P < 0.05)的危险基因,见图 3A。通过LASSO回归分析进一步减少风险模型中包含的基因数量,最终5个基因全部被纳入风险模型中,见图 3B~C。风险评分计算如下:风险评分=(0.293×LIPT1exp)+(0.064×DLATexp)+(0.031×MTF1exp)+(0.013×GLSexp)+(0.041×CDKN2Aexp)。根据风险评分公式计算的中位值将患者分为高危组和低危组。Kaplan-Meier生存曲线结果表明高危组在肝癌患者中的生存率较差,见图 3D,随着风险评分的上升,死亡的患者例数明显上升(P < 0.05),这表明风险评分和生存时间显著相关,见图 3E。ROC曲线分析显示该模型预测肝癌患者术后1、3、5年生存率的AUC值分别为0.733、0.646、0.635,见图 3F

    图  3  筛选独立预后因素
    Figure  3  Screening of independent prognostic factors
    A: ten cuprotosis prognostic genes were screened by univariate Cox regression, and HR and 95%CI were calculated; B: LASSO regression coefficient distribution diagram; C: the optimal λ value was selected through cross validation; D: survival status and survival distribution; E: survival curves of high-risk and low-risk groups; F: the predictive effectiveness of the risk model was evaluated with the ROC curve.

    单因素Cox回归分析结果表明,风险评分(HR=1.146, P < 0.001)和分期(HR=1.680, P < 0.001)是肝癌恶化的危险因素,见图 4A。多因素Cox分析结果表明,在调整其他混杂因素后,风险评分(HR=1.117, P < 0.001)仍是一个独立的预后因素,见图 4B。计算风险评分的AUC值为0.727,明显高于其他临床特征的AUC值,见图 4C,表明5个铜死亡相关基因对肝癌的预后风险预测模型可靠。高危组和低危组患者中的5个铜死亡相关基因在肝癌的分级和分期之间存在统计学差异(P < 0.01),见图 4D

    图  4  风险预测模型的独立预后价值
    Figure  4  Independent prognostic value of risk prediction models
    A: Univariate Cox regression analysis of risk score and clinical characteristic parameters; B: Multivariate Cox regression analysis of risk score and clinical characteristic parameters; C: ROC curve analysis of risk score; D: Expression levels and clinical characteristic distribution of five copper death-related genes in low-risk and high-risk HCC patients, P values were marked with asterisk, **: P < 0.01.

    在生物学过程(BP)方面,5个铜死亡基因主要在巨噬细胞凋亡过程及其调控、异染色质组装等方面富集,见图 5A。对于分子功能(MF),铜死亡基因在转移酶活性、酰基转移酶活性等方面富集,见图 5B。对于细胞成分(CC),铜死亡基因在线粒体基质、线粒体蛋白复合物以及氧化还原酶复合物等方面富集,见图 5C。在KEGG途径富集分析中,铜死亡基因主要与丙氨酸、天冬氨酸和谷氨酸的代谢以及柠檬酸循环(TCA循环)有关,见图 5D

    图  5  铜死亡相关基因的GO和KEGG富集分析
    Figure  5  GO and KEGG functional enrichment analysis of cuprotosis-related genes
    A: biological processes(BP) in GO analysis; B: molecular function(MF) in GO analysis; C: cellular components(CC) in GO analysis; D: KEGG pathways analysis.

    本研究拟探讨铜死亡相关基因在肝癌中的作用,发现其与肝癌的临床特征密切相关。首先,我们分析了10个目前已知的铜死亡相关基因的mRNA水平在肝癌组织和正常组织中的表达量,发现全部基因的表达量都存在差异。然后,基于这些差异表达的基因进行一致性聚类分析,确定了肝癌的两个亚组,第1亚组的预后较差。为了进一步评估这些铜死亡相关基因的预后价值,通过单因素Cox回归分析和LASSO回归分析构建了5个与铜死亡相关基因(LIPT1、DLAT、MTF1、GLS和CDKN2A)的风险特征模型,研究表明风险评分不仅是一个独立的预后指标,而且可以预测肝癌的临床特征。此外,功能分析显示,与TCA循环相关的通路被富集。因此,利用5个铜死亡相关基因建立的肝癌预后模型是有意义的。

    DLAT、MTF1、GLS、CDKN2A属于丙酮酸脱氢酶复合体(PDC)中编码蛋白的基因,该复合体是丙酮酸进入线粒体后转化为乙酰-CoA的唯一途径。而二氢硫辛酰胺转乙酰基酶基因(DLAT)属于PDC E2亚单位,Goh等[9]发现DLAT在胃癌细胞中表达显著上调,Shan等[10]发现DLAT通过促进戊糖磷酸途径的激活进而促进肿瘤细胞生长。金属调控转录因子1基因(MTF1)是一种锌指转录因子,通过激活下游靶基因促进细胞存活。Ji等[11]研究表明,MTF1具有致癌作用,并通过促进上皮—间充质转化从而促进卵巢肿瘤转移。在p53存在的乳腺癌细胞中,MTF1可被锌和铜激活。MTF1可能是一种新的早期诊断生物标志物,也是临床治疗的药物靶点。谷氨酰胺酶基因(GLS)转化为三羧酸循环代谢产物是促进癌细胞增殖的关键代谢过程,已被确定为癌症代谢的标志[12]。Guo等[13]发现GLS的表达在子宫内膜癌进展过程中升高,并与不良预后相关。Zhang等[14]发现线粒体GCN5L1通过调节GLS乙酰化和活性在肝癌发展过程中发挥肿瘤调节器的作用。细胞周期依赖性激酶抑制基因(CDKN2A)又称为P16基因,是一种多肿瘤抑制基因,能够参与细胞周期的调控,抑制细胞增殖和分裂,而肿瘤细胞增殖速度较正常细胞快,这可能是因为肿瘤细胞CDKN2A基因突变或失活,从而使其增殖分化速度增加。而关于脂酰转移酶1基因(LIPT1)的相关报道较少,其突变可引起丙酮酸和α-酮戊二酸脱氢酶继发缺乏的Leigh病,这是一种是由于呼吸链亚单位缺失造成的先天性代谢紊乱性疾病,是一种线粒体脑肌病[15]。铜死亡观点的提出及进一步揭示的具体机制,将为铜失调疾病、部分大量表达脂酰化线粒体蛋白及具有高度呼吸作用的癌症等疾病提供新的治疗策略。

    本研究有一定局限性:首先,使用的是公共数据库的回顾性数据,缺乏前瞻性临床数据来验证其预后意义;其次,考虑到肝癌是一种典型的多基因疾病,本文仅用5个铜死亡相关基因来建立预后模型,可能缺少其他能更精准预测肝癌预后的基因。

    综上所述,本研究使用5个铜死亡相关基因构建了一个新的风险评分模型,并且与生存时间独立相关,为预测肝癌预后提供了新的见解。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    程芮、龚芮:研究设计、文章撰写
    姜 维:数据整理、数据分析
    张澍田:研究指导、论文审阅、经费支持
  • 表  1   不同病理类型的结直肠息肉患者的基线特征

    Table  1   Baseline characteristics of patients with colorectal polyps of different pathological types

    Total Inflammatory
    polyps
    Hyperplastic
    polyps
    Serrated
    adenomas
    Tubular
    adenomas
    Tubular villous
    adenomas
    Villous
    adenomas
    P
    Number 1 527 264 262 39 926 33 3
    Gender(n(%)) 0.141
    Male 826(54.1) 127(48.1) 142(54.2) 24(61.5) 518(55.9) 14(42.4) 1(33.3)
    Female 701(45.9) 137(51.9) 120(45.8) 15(38.5) 408(44.1) 19(57.6) 2(66.7)
    Age, mean(SD) 69.85(5.23) 69.29(4.49) 69.28(5.65) 69.44(4.45) 70.15(5.35) 71.03(4.58) 71.00(0.00) 0.047
    BMI, mean(SD)(kg/m2) 24.44(3.34) 24.19(3.41) 24.33(3.06) 23.54(3.05) 24.68(3.38) 21.87(2.61) 24.03(1.86) <0.001
    Smoking history(n(%)) 0.001
    No 1117(73.1) 217(82.2) 202(77.1) 28(71.8) 643(69.4) 25(75.8) 2(66.7)
    Yes 410(26.9) 47(17.8) 60(22.9) 11(28.2) 283(30.6) 8(24.2) 1(33.3)
    Drinking history(n(%)) <0.001
    No 1086(71.1) 216(81.8) 195(74.4) 29(74.4) 621(67.1) 23(69.7) 2(66.7)
    Yes 441(28.9) 48(18.2) 67(25.6) 10(25.6) 305(32.9) 10(30.3) 1(33.3)
    Hypertension(n(%)) 0.277
    No 797(52.2) 143(54.2) 152(58.0) 19(48.7) 466(50.3) 15(45.5) 2(66.7)
    Yes 730(47.8) 121(45.8) 110(42.0) 20(51.3) 460(49.7) 18(54.5) 1(33.3)
    Triglyceride, mean(SD)
    (mmol/L)
    1.44(0.76) 1.47(0.78) 1.47(0.79) 1.31(0.67) 1.44(0.75) 1.24(0.59) 1.69(0.40) 0.469
    Fasting blood glucose,
    mean(SD)(mmol/L)
    5.67(1.33) 5.64(1.46) 5.85(1.19) 6.01(1.50) 5.62(1.31) 5.47(1.43) 5.66(0.16) 0.081
    Eat cereal(n(%)) 0.835
    ≥4 times per week 572(37.5) 95(36.0) 96(36.6) 17(43.6) 350(37.8) 12(36.4) 2(66.7)
    <4 times per week 955(62.5) 169(64.0) 166(63.4) 22(56.4) 576(62.2) 21(63.6) 1(33.3)
    Eat fresh vegetables (n(%)) 0.686
    ≥4 times per week 1412(92.5) 250(94.7) 240(91.6) 35(89.7) 853(92.1) 31(93.9) 3(100.0)
    <4 times per week 115(7.5) 14(5.3) 22(8.4) 4(10.3) 73(7.9) 2(6.1) 0(0.0)
    Eat fresh fruits(n(%)) 0.72
    ≥4 times per week 1223(80.1) 213(80.7) 215(82.1) 32(82.1) 736(79.5) 24(72.7) 3(100.0)
    <4 times per week 304(19.9) 51(19.3) 47(17.9) 7(17.9) 190(20.5) 9(27.3) 0(0.0)
    Eat probiotics(n(%)) 0.027
    ≥4 times per week 1363(89.3) 242(91.7) 223(85.1) 36(92.3) 834(90.1) 26(78.8) 2(66.7)
    <4 times per week 164(10.7) 22(8.3) 39(14.9) 3(7.7) 92(9.9) 7(21.2) 1(33.3)
    MMSE score, mean(SD) 28.76(2.21) 28.96(1.60) 28.99(1.61) 28.33(2.04) 28.70(2.38) 27.67(4.45) 28.00(1.00) 0.008
    Polyp location(n(%)) <0.001
    Ileocecal region 98(6.4) 21(8.0) 11(4.2) 7(17.9) 55(5.9) 3(9.1) 1(33.3)
    Ascending colon 279(18.3) 52(19.7) 29(11.1) 12(30.8) 179(19.3) 7(21.2) 0(0.0)
    Transverse colon 429(28.1) 62(23.5) 50(19.1) 9(23.1) 301(32.5) 7(21.2) 0(0.0)
    Descending colon 214(14.0) 39(14.8) 26(9.9) 5(12.8) 141(15.2) 3(9.1) 0(0.0)
    Sigmoid colon 321(21.0) 46(17.4) 91(34.7) 2(5.1) 172(18.6) 9(27.3) 1(33.3)
    Rectum 186(12.2) 44(16.7) 55(21.0) 4(10.3) 78(8.4) 4(12.1) 1(33.3)
    Polyp shape(n(%)) <0.001
    Pedicled polyp 141(9.2) 20(7.6) 19(7.3) 2(5.1) 91(9.8) 9(27.3) 0(0.0)
    Sessile polyp 544(35.6) 59(22.3) 77(29.4) 16(41.0) 377(40.7) 14(42.4) 1(33.3)
    Flat polyp 790(51.7) 173(65.5) 162(61.8) 13(33.3) 433(46.8) 7(21.2) 2(66.7)
    Laterally
    developmental polyp
    52(3.4) 12(4.5) 4(1.5) 8(20.5) 25(2.7) 3(9.1) 0(0.0)
    Polyp diameter,
    mean(SD)(mm)
    7.54(6.80) 7.25(8.44) 5.24(2.68) 12.49(10.47) 7.87(6.41) 13.43(11.41) 4.67(2.89) <0.001
    下载: 导出CSV

    表  2   腺瘤组和非腺瘤组单因素和多因素Logistic回归分析

    Table  2   Univariate and multivariate logistic regression analyses of adenoma and non-adenoma groups

    Variables Univariable model Multivariable model
    OR 95%CI P OR 95%CI P
    Gander (Female) 0.834 0.675-1.031 0.094 1.168 0.892-1.530 0.258
    Age 1.032 1.011-1.053 0.002 1.024 1.001-1.048 0.044
    BMI 1.026 0.994-1.060 0.118 1.046 1.008-1.087 0.020
    Smoking history 1.700 1.325-2.193 <0.001 1.493 1.035-2.158 0.032
    Drinking history 1.726 1.354-2.212 <0.001 1.264 0.881-1.815 0.204
    Hypertension 1.269 1.027-1.570 0.028 0.896 0.700-1.145 0.379
    Triglyceride (mmol/L) 0.929 0.811-1.067 0.294 0.875 0.746-1.028 0.101
    Fasting blood glucose (mmol/L) 0.936 0.866-1.012 0.096 0.944 0.867-1.029 0.182
    Eat cereal (<4 times per week) 0.928 0.745-1.154 0.502 0.888 0.695-1.132 0.339
    Eat fresh vegetables (<4 times per week) 1.166 0.781-1.774 0.461 1.653 1.003-2.769 0.052
    Eat fresh fruits (<4 times per week) 1.132 0.868-1.483 0.365 0.887 0.634-1.245 0.485
    Eat probiotics (<4 times per week) 0.874 0.627-1.229 0.433 0.800 0.555-1.160 0.234
    MMSE score 0.922 0.865-0.975 0.008 0.929 0.871-0.984 0.017
    Polyp location (Ascending colon) 1.185 0.717-1.935 0.501 1.216 0.721-2.027 0.457
    Polyp location (Transverse colon) 1.372 0.847-2.191 0.191 1.368 0.828-2.231 0.214
    Polyp location (Descending colon) 1.111 0.661-1.849 0.686 1.194 0.693-2.039 0.518
    Polyp location (Sigmoid colon) 0.651 0.401-1.042 0.078 0.686 0.412-1.126 0.141
    Polyp location (Rectum) 0.426 0.253-0.706 0.001 0.396 0.229-0.677 0.001
    Polyp shape (Sessile polyp) 1.147 0.750-1.729 0.519 1.141 0.725-1.772 0.562
    Polyp shape (Flat polyp) 0.519 0.346-0.765 0.001 0.531 0.342-0.810 0.004
    Polyp shape (Laterally spreading polyp) 0.860 0.434-1.753 0.671 0.306 0.135-0.698 0.005
    Polyp diameter 1.063 1.040-1.090 <0.001 1.063 1.035-1.095 <0.001
    下载: 导出CSV
  • [1]

    Arnold M, Abnet CC, Neale RE, et al. Global Burden of 5 Major Types of Gastrointestinal Cancer[J]. Gastroenterology, 2020, 159(1): 335-349. e15.

    [2]

    Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer[J]. N Engl J Med, 2009, 361(25): 2449-2460. doi: 10.1056/NEJMra0804588

    [3]

    Li X, Hu M, Wang Z, et al. Prevalence of diverse colorectal polyps and risk factors for colorectal carcinoma in situ and neoplastic polyps[J]. J Transl Med, 2024, 22(1): 361. doi: 10.1186/s12967-024-05111-z

    [4]

    Leigard E, Hertzberg D, Konrad D, et al. Increasing perioperative age and comorbidity: a 16-year cohort study at two University hospital sites in Sweden[J]. Int J Surg, 2024, 110(7): 4124-4131.

    [5]

    Lieberman DA, Rex DK, Winawer SJ, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer[J]. Gastroenterology, 2012, 143(3): 844-857. doi: 10.1053/j.gastro.2012.06.001

    [6]

    Siripongpreeda B, Mahidol C, Dusitanond N, et al. High prevalence of advanced colorectal neoplasia in the Thai population: a prospective screening colonoscopy of 1, 404 cases[J]. BMC gastroenterol, 2016, 16(1): 101. doi: 10.1186/s12876-016-0526-0

    [7]

    Rex DK. Colonoscopy: a review of its yield for cancers and adenomas by indication[J]. Am J Gastroenterol, 1995, 90(3): 353-365.

    [8]

    Williams AR, Balasooriya BA, Day DW. Polyps and cancer of the large bowel: a necropsy study in Liverpool[J]. Gut, 1982, 23(10): 835-842. doi: 10.1136/gut.23.10.835

    [9]

    Pendergrass CJ, Edelstein DL, Hylind LM, et al. Occurrence of colorectal adenomas in younger adults: an epidemiologic necropsy study[J]. Clin Gastroenterol Hepatol, 2008, 6(9): 1011-1015. doi: 10.1016/j.cgh.2008.03.022

    [10]

    Wolf AMD, Fontham ETH, Church TR, et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society[J]. CA Cancer J Clin, 2018, 68(4): 250-281. doi: 10.3322/caac.21457

    [11]

    Im JP, Kim D, Chung SJ, et al. Visceral obesity as a risk factor for colorectal adenoma occurrence in surveillance colonoscopy[J]. Gastrointest Endosc, 2018, 88(1): 119-127. e4.

    [12]

    Colussi D, Fabbri M, Zagari RM, et al. Lifestyle factors and risk for colorectal polyps and cancer at index colonoscopy in a FIT-positive screening population[J]. United European Gastroenterol J, 2018, 6(6): 935-942. doi: 10.1177/2050640618764711

    [13]

    He S, Berndt SI, Kunzmann AT, et al. Weight Change and Incident Distal Colorectal Adenoma Risk in the PLCO Cancer Screening Trial[J]. JNCI Cancer Spectr, 2022, 6(1): pkab098. doi: 10.1093/jncics/pkab098

    [14]

    Øines M, Helsingen LM, Bretthauer M, et al. Epidemiology and risk factors of colorectal polyps[J]. Best Pract Res Clin Gastroenterol, 2017, 31(4): 419-424. doi: 10.1016/j.bpg.2017.06.004

    [15]

    Shin A, Hong CW, Sohn DK, et al. Associations of cigarette smoking and alcohol consumption with advanced or multiple colorectal adenoma risks: a colonoscopy-based case-control study in Korea[J]. Am J Epidemiol, 2011, 174(5): 552-562. doi: 10.1093/aje/kwr098

    [16]

    Paun BC, Kukuruga D, Jin Z, et al. Relation between normal rectal methylation, smoking status, and the presence or absence of colorectal adenomas[J]. Cancer, 2010, 116(19): 4495-4501. doi: 10.1002/cncr.25348

    [17]

    Fu Z, Shrubsole MJ, Li G, et al. Interaction of cigarette smoking and carcinogen-metabolizing polymorphisms in the risk of colorectal polyps[J]. Carcinogenesis, 2013, 34(4): 779-786. doi: 10.1093/carcin/bgs410

    [18]

    Gao Y, Hayes RB, Huang WY, et al. DNA repair gene polymorphisms and tobacco smoking in the risk for colorectal adenomas[J]. Carcinogenesis, 2011, 32(6): 882-887. doi: 10.1093/carcin/bgr071

    [19]

    Yu JH, Bigler J, Whitton J, et al. Mismatch repair polymorphisms and colorectal polyps: hMLH1-93G>A variant modifies risk associated with smoking[J]. Am J Gastroenterol, 2006, 101(6): 1313-1319. doi: 10.1111/j.1572-0241.2006.00551.x

    [20]

    Huang WY, Berndt SI, Kang D, et al. Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(2): 306-311. doi: 10.1158/1055-9965.EPI-05-0751

    [21]

    Zhu JZ, Wang YM, Zhou QY, et al. Systematic review with meta-analysis: alcohol consumption and the risk of colorectal adenoma[J]. Aliment Pharmacol Ther, 2014, 40(4): 325-337. doi: 10.1111/apt.12841

    [22]

    Ma C, Li Y, Mei Z, et al. Association Between Bowel Movement Pattern and Cognitive Function: Prospective Cohort Study and a Metagenomic Analysis of the Gut Microbiome[J]. Neurology, 2023, 101(20): e2014-e2025.

    [23]

    Khatibzadeh N, Ziaee SA, Rahbar N, et al. The indirect role of site distribution in high-grade dysplasia in adenomatous colorectal polyps[J]. J Cancer Res Ther, 2005, 1(4): 204-207. doi: 10.4103/0973-1482.19587

    [24]

    Nusko G, Mansmann U, Altendorf-Hofmann A, et al. Risk of invasive carcinoma in colorectal adenomas assessed by size and site[J]. Int J Colorectal Dis, 1997, 12(5): 267-271. doi: 10.1007/s003840050103

    [25]

    Fenoglio CM, Kaye GI, Pascal RR, et al. Defining the precursor tissue of ordinary large bowel carcinoma: implications for cancer prevention[J]. Pathol Annu, 1977, 12 Pt 1: 87-116.

    [26] 雷甜甜, 刘家欢, 黄虹玉, 等. 进展期结直肠腺瘤及高危腺瘤的危险因素分析[J]. 中华胃肠内镜电子杂志, 2021, 8(2): 61-67. [Lei TT, Liu JH, Huang HY, et al. Analysis of risk factors for advanced colorectal adenoma and high-risk adenoma[J]. Zhonghua Wei Chang Nei Jing Dian Zi Za Zhi, 2021, 8(2): 61-67.] doi: 10.3877/cma.j.issn.2095-7157.2021.02.004

    Lei TT, Liu JH, Huang HY, et al. Analysis of risk factors for advanced colorectal adenoma and high-risk adenoma[J]. Zhonghua Wei Chang Nei Jing Dian Zi Za Zhi, 2021, 8(2): 61-67. doi: 10.3877/cma.j.issn.2095-7157.2021.02.004

    [27]

    Naravadi V, Gupta N, Early D, et al. Prevalence of advanced histological features and synchronous neoplasia in patients with flat adenomas[J]. Gastrointest Endosc, 2016, 83(4): 795-799. doi: 10.1016/j.gie.2015.08.040

    [28]

    Bafandeh Y, Khoshbaten M, Eftekhar Sadat AT, et al. Clinical predictors of colorectal polyps and carcinoma in a low prevalence region: results of a colonoscopy based study[J]. World J Gastroenterol, 2008, 14(10): 1534-1538. doi: 10.3748/wjg.14.1534

    [29]

    Ashktorab H, Paydar M, Yazdi S, et al. BMI and the risk of colorectal adenoma in African-Americans[J]. Obesity (Silver Spring), 2014, 22(5): 1387-1391. doi: 10.1002/oby.20702

    [30]

    Nouraie M, Hosseinkhah F, Brim H, et al. Clinicopathological features of colon polyps from African-Americans[J]. Dig Dis Sci, 2010, 55(5): 1442-1449. doi: 10.1007/s10620-010-1133-5

  • 期刊类型引用(2)

    1. 高百鑫,李玲,张竞飞,袁超,张萌,蔡圳. 基于生物信息学构建铜死亡相关口腔鳞癌预后模型. 实用口腔医学杂志. 2025(02): 253-260 . 百度学术
    2. 张晓晶,胡林霞,卜迁,孙东雷. 细胞铜死亡——肿瘤防治研究新领域. 现代预防医学. 2024(07): 1325-1330+1337 . 百度学术

    其他类型引用(1)

表(2)
计量
  • 文章访问数:  1126
  • HTML全文浏览量:  2921
  • PDF下载量:  377
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-08-01
  • 修回日期:  2024-09-18
  • 录用日期:  2024-11-06
  • 网络出版日期:  2024-11-17
  • 刊出日期:  2025-01-24

目录

/

返回文章
返回
x 关闭 永久关闭