高级搜索

点击化学在肿瘤研究中的应用

张百红, 岳红云

张百红, 岳红云. 点击化学在肿瘤研究中的应用[J]. 肿瘤防治研究, 2024, 51(11): 951-955. DOI: 10.3971/j.issn.1000-8578.2024.24.0358
引用本文: 张百红, 岳红云. 点击化学在肿瘤研究中的应用[J]. 肿瘤防治研究, 2024, 51(11): 951-955. DOI: 10.3971/j.issn.1000-8578.2024.24.0358
ZHANG Baihong, YUE Hongyun. Click Chemistry in Human Cancer Research[J]. Cancer Research on Prevention and Treatment, 2024, 51(11): 951-955. DOI: 10.3971/j.issn.1000-8578.2024.24.0358
Citation: ZHANG Baihong, YUE Hongyun. Click Chemistry in Human Cancer Research[J]. Cancer Research on Prevention and Treatment, 2024, 51(11): 951-955. DOI: 10.3971/j.issn.1000-8578.2024.24.0358

点击化学在肿瘤研究中的应用

基金项目: 甘肃省自然科学基金(22JR5RA007);联勤保障部队第九四〇医院课题(2021yxky052)
详细信息
    作者简介:

    张百红(1970-),男,博士,副主任医师,主要从事消化道肿瘤的基础和临床研究

    通信作者:

    岳红云(1970-),女,博士,主任医师,主要从事视觉心理和肿瘤心理研究,E-mail: yhyophthalmologist@163.com,ORCID: 0000-0002-9373-2782

  • 中图分类号: R730.1

Click Chemistry in Human Cancer Research

Funding: Natural Science Foundation of Gansu Province of China (No. 22JR5RA007); Research Subject of 940th Hospital (No. 2021yxky052)
More Information
  • 摘要:

    点击化学是最重要的生物正交化学反应,它像“乐高”一样将分子连接起来。点击化学正深刻影响着肿瘤研究,例如修饰肿瘤细胞、设计肿瘤药物、传输肿瘤药物、药物临床前评估和操控免疫细胞。点击化学也将被用于分子发现和靶向治疗,为肿瘤研究提供新方法。

     

    Abstract:

    As one of the typical bioorthogonal chemistry reactions, click chemistry joins molecules similar to “Lego”. Bioorthogonal click chemistry is used to modify cancer cells, design antitumor drugs, delivery drugs, manipulate immune cells, and help preclinical evaluation. Click chemistry provides a promising approach for discovering molecules and targeting cancer in cancer research.

     

  • Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    张百红:检索文献、论文撰写
    岳红云:论文审校
  • 图  1   以铜催化叠氮化物–炔烃环加成反应为代表的点击化学将分子连接起来[1]

    Figure  1   As one of the typical click chemistry, copper-catalyzed azide-alkyne cycloaddition joins molecules[1]

  • [1]

    Bauer D, Sarrett SM, Lewis JS, et al. Click chemistry: a transformative technology in nuclear medicine[J]. Nat Protoc, 2023, 18(6): 1659-1668. doi: 10.1038/s41596-023-00825-8

    [2]

    Zeglis BM, Lewis JS. Click here for better chemistry[J]. N Engl J Med, 2022, 387(24): 2291-2293. doi: 10.1056/NEJMcibr2213596

    [3]

    Wang H, Mooney DJ. Metabolic glycan labelling for cancer-targeted therapy[J]. Nat Chem, 2020, 12(12): 1102-1114. doi: 10.1038/s41557-020-00587-w

    [4]

    Plumet C, Mohamed AS, Vendeuvre T, et al. Cell-cell interactions via non-covalent click chemistry[J]. Chem Sci, 2021, 12(26): 9017-9021. doi: 10.1039/D1SC01637G

    [5]

    Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans[J]. Nat Rev Drug Discov, 2021, 20(3): 217-243. doi: 10.1038/s41573-020-00093-1

    [6]

    Cioce A, Calle B, Rizou T, et al. Cell-specific bioorthogonal tagging of glycoproteins[J]. Nat Commun, 2022, 13(1): 6237. doi: 10.1038/s41467-022-33854-0

    [7]

    Hao M, Ling XY, Sun Y, et al. Tracking endogenous proteins based on RNA editing-mediated genetic code expansio[J]. Nat Chem Biol, 2024, 20(6): 721-731. doi: 10.1038/s41589-023-01533-w

    [8]

    Bo Y, Zhou JY, Cai KM, et al. Leveraging intracellular ALDH1A1 activity for selective cancer stem-like cell labeling and targeted treatment via in vivo click reaction[J]. Proc Natl Acad Sci U S A, 2023, 120(36): e2302342120. doi: 10.1073/pnas.2302342120

    [9]

    Jiang X, Hao X, Jing L, et al. Recent applications of click chemistry in drug discovery[J]. Expert Opin Drug Discov, 2019, 14(8): 779-789. doi: 10.1080/17460441.2019.1614910

    [10]

    Zhao R, Zhu JL, Jiang XY, et al. Click chemistry-aided drug discovery: A retrospective and prospective outlook[J]. Eur J Med Chem, 2024, 264: 116037. doi: 10.1016/j.ejmech.2023.116037

    [11]

    Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations[J]. Cell, 2020, 180(4): 605-632. doi: 10.1016/j.cell.2020.01.025

    [12]

    Farrer NJ, Griffith DM. Exploiting azide-alkyne click chemistry in the synthesis, tracking and targeting of platinum anticancer complexes[J]. Curr Opin Chem Biol, 2020, 55: 59-68. doi: 10.1016/j.cbpa.2019.12.001

    [13]

    McStay N, Slator C, Singh V, et al. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents[J]. Nucleic Acids Res, 2021, 49(18): 10289-10308. doi: 10.1093/nar/gkab817

    [14]

    Gao J, Hou B, Zhu Q, et al. Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy[J]. Nat Commun, 2022, 13(1): 4318. doi: 10.1038/s41467-022-32050-4

    [15]

    Itoh Y, Zhan P, Tojo T, et al. Discovery of selective histone deacetylase 1 and 2 inhibitors: Screening of a focused library constructed by click chemistry, kinetic binding analysis, and biological evaluation[J]. J Med Chem, 2023, 66(22): 15171-15188. doi: 10.1021/acs.jmedchem.3c01095

    [16]

    Szijj PA, Gray MA, Ribi MK, et al. Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer[J]. Nat Chem, 2023, 15(11): 1636-1647. doi: 10.1038/s41557-023-01280-4

    [17]

    Wang Y, Chen J, Zhang S, et al. Bispecific nanobody-aptamer conjugates for enhanced cancer therapy in solid tumors[J]. Small, 2024, 20(25): e2308265. doi: 10.1002/smll.202308265

    [18]

    Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates[J]. Nat Rev Drug Discov, 2017, 16(5): 315-337. doi: 10.1038/nrd.2016.268

    [19]

    Yi WZ, Xiao P, Liu XC, et al. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry[J]. Signal Transduct Target Ther, 2022, 7(1): 386. doi: 10.1038/s41392-022-01250-1

    [20]

    Voigt M, Fritz T, Worm M, et al. Surface modification of nanoparticles and nanovesicles via click-chemistry[J]. Methods Mol Biol, 2019, 2000: 235-245.

    [21]

    Lee SH, Park OK, Kim J, et al. Deep tumor penetration of drug-loaded nanoparticles by click reaction-assisted immune cell targeting strategy[J]. J Am Chem Soc, 2019, 141(35): 13829-13840. doi: 10.1021/jacs.9b04621

    [22]

    Zhang FY, Li ZX, Duan Y, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule[J]. Sci Robot, 2022, 7(70): eabo4160. doi: 10.1126/scirobotics.abo4160

    [23]

    Zhou M, Yin YN, Zhao JH, et al. Applications of microalga-powered microrobots in targeted drug delivery[J]. Biomater Sci, 2023, 11(23): 7512-7530. doi: 10.1039/D3BM01095C

    [24]

    Zhao Z, Zhang Z, Duan S, et al. Cytosolic protein delivery via metabolic glycoengineering and bioorthogonal click reactions[J]. Biomater Sci, 2021, 9(13): 4639-4647. doi: 10.1039/D1BM00548K

    [25]

    You Y, Deng Q, Wang Y, et al. DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems[J]. Nat Commun, 2022, 13(1): 1459. doi: 10.1038/s41467-022-29167-x

    [26]

    Tyler DS, Vappiani J, Cañeque T, et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies[J]. Science, 2017, 356(6345): 1397-1401. doi: 10.1126/science.aal2066

    [27]

    Pang Z, Schafroth MA, Ogasawara D, et al. In situ identification of cellular drug targets in mammalian tissue[J]. Cell, 2022, 185(10): 1793-1805. doi: 10.1016/j.cell.2022.03.040

    [28]

    Huang L, Ma B, Zhang C, et al. Unveiling poly(rC)-binding protein 2 as the target protein for curcusone C against prostate cancer: mechanism validation through click chemistry-activity based proteomics profiling approach[J]. BMC Cancer, 2023, 23(1): 957. doi: 10.1186/s12885-023-11467-0

    [29]

    Mukhopadhyay M. Sugar-coating dendritic cells[J]. Nat Methods, 2020, 17(7): 651. doi: 10.1038/s41592-020-0892-y

    [30]

    Wang H, Sobral MC, Zhang DKY, et al. Metabolic labeling and targeted modulation of dendritic cells[J]. Nat Mater, 2020, 19(11): 1244-1252. doi: 10.1038/s41563-020-0680-1

    [31]

    Hao M, Hou S, Li W, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy[J]. Sci Transl Med, 2020, 12(571): eaaz6667. doi: 10.1126/scitranslmed.aaz6667

    [32]

    Shajan I, Rochet LNC, Tracey SR, et al. Rapid access to potent bispecific T cell engagers using biogenic tyrosine click chemistry[J]. Bioconjug Chem, 2023, 34(12): 2215-2220. doi: 10.1021/acs.bioconjchem.3c00357

    [33]

    Zhao YY, Dong YS, Yang SH, et al. Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy[J]. ACS Cent Sci, 2022, 8(5): 603-614. doi: 10.1021/acscentsci.2c00163

    [34]

    Bhatta R, Han J, Liu Y, et al. Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines[J]. Nat Commun, 2023, 14(1): 8047. doi: 10.1038/s41467-023-43914-8

    [35]

    Peplow M. 'Clicked' drugs: researchers prove the remarkable chemistry in humans[J]. Nat Biotechnol, 2023, 41(7): 883-885. doi: 10.1038/s41587-023-01860-2

    [36]

    Zheng J, Zheng Z, Fu C, et al. Deciphering intercellular signaling complexes by interaction-guided chemical proteomics[J]. Nat Commun, 2023, 14(1): 4138. doi: 10.1038/s41467-023-39881-9

    [37]

    Sun N, Tran BV, Peng Z, et al. Coupling lipid labeling and click chemistry enables isolation of extracellular vesicles for noninvasive detection of oncogenic gene alterations[J]. Adv Sci (Weinh), 2022, 9(14): e2105853. doi: 10.1002/advs.202105853

图(1)
计量
  • 文章访问数:  960
  • HTML全文浏览量:  465
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 修回日期:  2024-05-09
  • 录用日期:  2024-08-12
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭