-
摘要:
免疫治疗在血液恶性肿瘤治疗领域有着举足轻重的地位,而其中嵌合抗原受体(CAR)T细胞疗法为血液恶性肿瘤免疫治疗构建了新的治疗格局,在B系血液恶性肿瘤治疗领域收获了较为满意的临床效果。而由于存在CAR-T细胞自相残杀、肿瘤细胞污染、持续性T细胞缺乏等临床相关问题,CAR-T细胞疗法在治疗急性T淋巴细胞白血病(T-ALL)时受到一定限制。因此,突破现有瓶颈,对T-ALL的CAR-T疗法进行优化,提高疗效的同时改善患者的预后,是当前的主要任务。
-
关键词:
- 细胞免疫疗法 /
- CAR-T细胞疗法 /
- 急性T淋巴细胞白血病
Abstract:Tumor immunotherapy occupies a pivotal position in the field of hematological malignancies. Chimeric antigen receptor (CAR) T-cell therapy has established a new therapeutic pattern for hematological immunotherapy and achieved satisfactory clinical results in the treatment of B-lineage hematological malignancies. However, CAR T-cell therapy has some limitations in the treatment of T-cell acute lymphoblastic leukemia because of the presence of CAR T-cell fratricide, tumor cell contamination, T-cell aplasia, and other clinically relevant problems. Therefore, the current major challenge is overcoming the existing bottlenecks to optimize CAR-T therapy and improve its efficacy against T-ALL while improving the prognosis of patients.
-
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:韩雅静:文献检索、论文构思、撰写及修改赵丽平、唐凯婷、牛卿、潘静:论文审校及修改冯晓明:论文选题、撰写指导及修改
-
[1] Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia[J]. Nat Rev Cancer, 2016, 16(8): 494-507. doi: 10.1038/nrc.2016.63
[2] Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update[J]. Blood Cancer J, 2017, 7(6): e577. doi: 10.1038/bcj.2017.53
[3] Png YT, Vinanica N, Kamiya T, et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies[J]. Blood Adv, 2017, 1(25): 2348-2360. doi: 10.1182/bloodadvances.2017009928
[4] Kim MY, Cooper ML, Jacobs MT, et al. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy[J]. JCI Insight, 2021, 6(16): e149819. doi: 10.1172/jci.insight.149819
[5] Pan J, Tan Y, Wang G, et al. Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase Ⅰ Trial[J]. J Clin Oncol, 2021, 39(30): 3340-3351. doi: 10.1200/JCO.21.00389
[6] Testa U, Sica S, Pelosi E, et al. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia[J]. Mediterr J Hematol Infect Dis, 2024, 16(1): e2024010. doi: 10.4084/MJHID.2024.010
[7] Hu Y, Zhou Y, Zhang M, et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase Ⅰ clinical study[J]. Cell Res, 2022, 32(11): 995-1007. doi: 10.1038/s41422-022-00721-y
[8] Chiesa R, Georgiadis C, Syed F, et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia[J]. N Engl J Med, 2023, 389(10): 899-910. doi: 10.1056/NEJMoa2300709
[9] Li S, Wang X, Liu L, et al. CD7 targeted "off-the-shelf" CAR-T demonstrates robust in vivo expansion and high efficacy in the treatment of patients with relapsed and refractory T cell malignancies[J]. Leukemia, 2023, 37(11): 2176-2186. doi: 10.1038/s41375-023-02018-4
[10] Li S, Wang X, Yuan Z, et al. Eradication of T-ALL Cells by CD7-targeted Universal CAR-T Cells and Initial Test of Ruxolitinib-based CRS Management[J]. Clin Cancer Res, 2021, 27(5): 1242-1246. doi: 10.1158/1078-0432.CCR-20-1271
[11] Zhang M, Chen D, Fu X, et al. Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-cell Therapy for Patients with Relapsed and Refractory T-cell Acute Lymphoblastic Leukemia/Lymphoma[J]. Clin Cancer Res, 2022, 28(13): 2830-2843. doi: 10.1158/1078-0432.CCR-21-4097
[12] Lu P, Liu Y, Yang J, et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial[J]. Blood, 2022, 140(4): 321-334.
[13] Zhang X, Yang J, Li J, et al. Analysis of 60 patients with relapsed or refractory T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma treated with CD7-targeted chimeric antigen receptor-T cell therapy[J]. Am J Hematol, 2023, 98(12): 1898-1908. doi: 10.1002/ajh.27094
[14] Tan Y, Shan L, Zhao L, et al. Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia[J]. J Hematol Oncol, 2023, 16(1): 34. doi: 10.1186/s13045-023-01427-3
[15] Addakiri S, Bencharef H, Jaddaoui S, et al. Immunophenotype of Acute Lymphoblastic Leukemia: The Experience of University Hospital Centre Casablanca - Morocco[J]. Clin Lab, 2023, 69(9).
[16] Yoshimoto M. The ontogeny of murine B-1a cells[J]. Int J Hematol, 2020, 111(5): 622-627. doi: 10.1007/s12185-019-02787-8
[17] Mamonkin M, Rouce RH, Tashiro H, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies[J]. Blood, 2015, 126(8): 983-992. doi: 10.1182/blood-2015-02-629527
[18] Hill LC, Rouce RH, Smith TS, et al. Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients with Relapsed/Refractory T-Cell Malignancies[J]. Blood, 2019, 134 (Supplement 1): 199.
[19] RRouce RH, Hill LC, Smith TS, et al. Early Signals of Anti-Tumor Efficacy and Safety with Autologous CD5. CAR T-Cells in Patients with Refractory/Relapsed T-Cell Lymphoma[J]. Blood, 2021, 138 (Supplement 1): 654.
[20] Chun I, Kim KH, Chiang YH, et al. CRISPR-Cas9 Knock out of CD5 Enhances the Anti-Tumor Activity of Chimeric Antigen Receptor T Cells[J]. Blood, 2020, 136 (Supplement 1): 51-52.
[21] Feng J, Xu H, Cinquina A, et al. Treatment of Aggressive T Cell Lymphoblastic Lymphoma/leukemia Using Anti-CD5 CAR T Cells[J]. Stem Cell Rev Rep, 2021, 17(2): 652-661. doi: 10.1007/s12015-020-10092-9
[22] Mamonkin M, Mukherjee M, Srinivasan M, et al. Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies[J]. Cancer Immunol Res, 2018, 6(1): 47-58. doi: 10.1158/2326-6066.CIR-17-0126
[23] Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia[J]. Lancet Oncol, 2009, 10(2): 147-156. doi: 10.1016/S1470-2045(08)70314-0
[24] Campana D, van Dongen JJ, Mehta A, et al. Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia[J]. Blood, 1991, 77(7): 1546-1554. doi: 10.1182/blood.V77.7.1546.1546
[25] Schachter O, Tabibian-Keissar H, Debby A, et al. Evaluation of the polymerase chain reaction-based T-cell receptor β clonality test in the diagnosis of early mycosis fungoides[J]. J Am Acad Dermatol, 2020, 83(5): 1400-1405. doi: 10.1016/j.jaad.2020.05.110
[26] Maciocia PM, Wawrzyniecka PA, Philip B, et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies[J]. Nat Med, 2017, 23(12): 1416-1423. doi: 10.1038/nm.4444
[27] Chen M, Wang A, Liu S, et al. Analysis of the Expression of the TRBC1 in T lymphocyte tumors[J]. Indian J Hematol Blood Transfus, 2021, 37(2): 271-279. doi: 10.1007/s12288-020-01357-x
[28] Kowarsch F, Maurer-Granofszky M, Weijler L, et al. FCM marker importance for MRD assessment in T-cell acute lymphoblastic leukemia: An AIEOP-BFM-ALL-FLOW study group report[J]. Cytometry A, 2024, 105(1): 24-35. doi: 10.1002/cyto.a.24805
[29] Cox CV, Diamanti P, Moppett JP, et al. Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia[J]. PLoS One, 2016, 11(10): e0165210. doi: 10.1371/journal.pone.0165210
[30] Shi J, Zhang Z, Cen H, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity[J]. J Hematol Oncol, 2021, 14(1): 162. doi: 10.1186/s13045-021-01178-z
[31] Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology[J]. J Cell Commun Signal, 2018, 12(1): 55-68. doi: 10.1007/s12079-017-0445-z
[32] Gökbuget N, Boissel N, Chiaretti S, et al. Diagnosis, prognostic factors, and assessment of ALL in adults: 2024 ELN recommendations from a European expert panel[J]. Blood, 2024, 143(19): 1891-1902. doi: 10.1182/blood.2023020794
[33] Riillo C, Caracciolo D, Grillone K, et al. A Novel Bispecific T-Cell Engager (CD1a x CD3ε) BTCE Is Effective against Cortical-Derived T Cell Acute Lymphoblastic Leukemia (T-ALL) Cells[J]. Cancers (Basel), 2022, 14(12): 2886. doi: 10.3390/cancers14122886
[34] Carrera Silva EA, Nowak W, Tessone L, et al. CD207+CD1a+ cells circulate in pediatric patients with active Langerhans cell histiocytosis[J]. Blood, 2017, 130(17): 1898-1902. doi: 10.1182/blood-2017-05-782730
[35] Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia[J]. Blood, 2019, 133(21): 2291-2304. doi: 10.1182/blood-2018-10-882944
[36] Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia[J]. Blood, 2017, 129(9): 1134-1142. doi: 10.1182/blood-2016-07-692608
[37] Khurana S, Heckman MG, Craig FE, et al. Evaluation of Novel Targets, Including CC-Chemokine Receptor 4, in Adult T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Mayo Clinic Clinical and Pathologic Study[J]. Arch Pathol Lab Med, 2024, 148(4): 471-475. doi: 10.5858/arpa.2022-0482-OA
[38] Murai K, Hiroyuki H, Sato A, et al. Mogamulizumab Monotherapy in the Treatment of Relapsed/Refractory Peripheral T-Cell Lymphoma or Cutaneous T-Cell Lymphoma Patients in Single-Institution Experience[J]. Blood, 2017, 130(Suppl 1): 5179.
[39] Maciocia PM, Wawrzyniecka PA, Maciocia NC, et al. Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia[J]. Blood, 2022, 140(1): 25-37.
[40] Watanabe K, Gomez AM, Kuramitsu S, et al. Identifying highly active anti-CCR4 CAR T cells for the treatment of T-cell lymphoma[J]. Blood Adv, 2023, 7(14): 3416-3430. doi: 10.1182/bloodadvances.2022008327
[41] Wang H, Franco F, Ho PC. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy[J]. Trends Cancer, 2017, 3(8): 583-592. doi: 10.1016/j.trecan.2017.06.005
[42] Dürkop H, Latza U, Hummel M, et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease[J]. Cell, 1992, 68(3): 421-427.
[43] Wang CM, Wu ZQ, Wang Y, et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase Ⅰ Trial[J]. Clin Cancer Res, 2017, 23(5): 1156-1166. doi: 10.1158/1078-0432.CCR-16-1365
[44] Rodriguez-Pinilla SM, Domingo-Domenech E, Climent F, et al. Clinical and pathological characteristics of peripheral T-cell lymphomas in a Spanish population: a retrospective study[J]. Br J Haematol, 2021, 192(1): 82-99. doi: 10.1111/bjh.16741
[45] Wu Y, Chen D, Lu Y, et al. A new immunotherapy strategy targeted CD30 in peripheral T-cell lymphomas: CAR-modified T-cell therapy based on CD30 mAb[J]. Cancer Gene Ther, 2022, 29(2): 167-177. doi: 10.1038/s41417-021-00295-8
[46] Noronha EP, Marques LVC, Andrade FG, et al. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia[J]. Front Oncol, 2019, 9: 316. doi: 10.3389/fonc.2019.00316
[47] Pu Q, Qiao J, Liu Y, et al. Differential diagnosis and identification of prognostic markers for peripheral T-cell lymphoma subtypes based on flow cytometry immunophenotype profiles[J]. Front Immunol, 2022, 13: 1008695. doi: 10.3389/fimmu.2022.1008695
[48] Pinz K, Liu H, Golightly M, et al. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells[J]. Leukemia, 2016, 30(3): 701-707. doi: 10.1038/leu.2015.311
[49] Fang KK, Lee J, Khatri I, et al. Targeting T-cell malignancies using allogeneic double-negative CD4-CAR-T cells[J]. J Immunother Cancer, 2023, 11(9): e007277. doi: 10.1136/jitc-2023-007277
[50] Ma G, Shen J, Pinz K, et al. Targeting T Cell Malignancies Using CD4CAR T-Cells and Implementing a Natural Safety Switch[J]. Stem Cell Rev Rep, 2019, 15(3): 443-447. doi: 10.1007/s12015-019-09876-5
[51] Germain RN. T-cell development and the CD4-CD8 lineage decision[J]. Nat Rev Immunol, 2002, 2(5): 309-322. doi: 10.1038/nri798
[52] Rasaiyaah J, Georgiadis C, Preece R, et al. TCRαβ/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy[J]. JCI Insight, 2018, 3(13): e99442. doi: 10.1172/jci.insight.99442
[53] Mollanoori H, Shahraki H, Rahmati Y, et al. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment[J]. Hum Immunol, 2018, 79(12): 876-882. doi: 10.1016/j.humimm.2018.09.007
[54] Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell[J]. Nat Med, 2018, 24(10): 1499-1503. doi: 10.1038/s41591-018-0201-9
[55] Doan A, Pulsipher MA. Hypogammaglobulinemia due to CAR T-cell therapy[J]. Pediatr Blood Cancer, 2018, 65(4): 10.
[56] Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial[J]. Nat Med, 2021, 27(8): 1419-1431. doi: 10.1038/s41591-021-01436-0
[57] Pan J, Tang K, Luo Y, et al. Sequential CD19 and CD22 chimeric antigen receptor T-cell therapy for childhood refractory or relapsed B-cell acute lymphocytic leukaemia: a single-arm, phase 2 study[J]. Lancet Oncol, 2023, 24(11): 1229-1241. doi: 10.1016/S1470-2045(23)00436-9
[58] Sahillioglu AC, Schumacher TN. Safety switches for adoptive cell therapy[J]. Curr Opin Immunol, 2022, 74: 190-198. doi: 10.1016/j.coi.2021.07.002
计量
- 文章访问数: 2036
- HTML全文浏览量: 2755
- PDF下载量: 2508