Difference in Intestinal Flora Among Patients with Esophageal Squamous Cell Carcinoma and Normal Population
-
摘要:目的
探讨食管鳞状细胞癌患者与健康人群肠道菌群的差异,为肠道菌群作为食管鳞状细胞癌早期诊断标志物提供依据。
方法利用微生物扩增子测序法对30例已确诊食管鳞状细胞癌患者的活检组织样本(观察组)及同期收集的25例健康体检者食管活检组织样本(对照组)提取组织DNA,检测DNA完整性与DNA质量,对两组样本的肠道菌群组成及丰度进行测定,并分析其组间的统计学差异。
结果两组食管黏膜组织样本菌群Beta多样性方面有较大相似性,但存在一定差异,观察组患者变形菌门Proteobacteria、疣微菌门Verrucomicrobia的相对丰富度高于对照组(P<0.05);观察组患者巨单胞菌Megamonas属的相对丰度低于对照组(P=0.025)。
结论加强对食管鳞状细胞癌患者肠道菌群变化研究可能对其防治具有重要意义。
Abstract:ObjectiveTo investigate the difference in intestinal flora among patients with esophageal squamous cell carcinoma and normal population and to provide a basis for the early diagnosis of esophageal squamous cell carcinoma as a marker.
MethodsDNA was extracted from biopsy tissue samples of 30 patients with esophageal squamous cell carcinoma (observation group) and 25 healthy people (control group) by microbial amplification sequencing. The integrity and quality of DNA were detected. The composition and abundance of intestinal flora in the samples of the two groups were determined.
ResultsA great similarity in beta diversity was found between the two groups, but some differences were also observed. The relative abundance of Proteobacteria and Verrucomicrobia in the observation group was higher than that in the control group (P<0.05). The relative abundance of Megamonas in the observation group was lower than that in the control group (P=0.025).
ConclusionStrengthening the study on the changes in intestinal flora among patients with esophageal squamous cell carcinoma may be of great significance for its prevention and treatment.
-
Key words:
- Esophageal squamous cell carcinoma /
- Intestinal flora /
- Markers
-
0 引言
2020年,全球将近有60万食管癌新发病例和54万例食管癌死亡病例,分别位于全球恶性肿瘤发病和死亡排名的第7位和第6位[1],而食管鳞状细胞癌(esophageal squamous cell carcinoma, ESCC)是食管癌最常见的组织学亚型。肠道菌群被称为人体的另一大“器官”,其人体消化、代谢、免疫等各方面都有重要作用[2]。肠道菌群主要由厚壁菌门、拟杆菌门、放线菌门和变形菌门四大类组成[3],其中在健康状态下,超过80%的肠道微生物组是由专性厌氧菌组成的,属于厚壁菌和拟杆菌,少于5%属于变形菌门[4],微生物群落之间比例的显著变化或新细菌群的扩张以及功能的改变,可导致宿主和微生物间相互作用的不平衡,进而引起菌群失调[5]。有研究表明,以厚壁菌门,尤其是产丁酸盐的菌种巨大消耗是消化道肿瘤肠道菌群组成的主要形式,可导致食管鳞状细胞癌、胃癌等消化道肿瘤的发生[6],与肠道微生物组相比,关于食管微生物组的研究是有限的,需进一步研究[7]。
1 资料与方法
1.1 研究对象
收集新疆医科大学第三临床医学院2019年1月—12月胃镜下活检确诊的食管鳞状细胞癌患者30例,其中男21例、女9例;同期收集健康体检者25例为对照组,其中男18例、女7例。食管鳞状细胞癌组平均年龄62.03±10.51岁,健康对照组46.28±12.90岁。两组人群中均为新疆本地居民,所有患者在采样前1个月均未使用过抗生素药物。食管鳞状细胞癌的诊断依据食管癌诊疗规范(2018年版)[8]。本研究所有患者均知情同意,并获得新疆医科大学附属肿瘤医院伦理委员会批准(K-2019022)。
1.2 方法
1.2.1 微生物扩增子测序法
扩增子测序在微生物生态学研究中被用于探索微生物群落,是一种半定量方法,揭示了微生物群落中细菌群体的相对丰度。细菌的16srRNA基因是最广泛使用的针对微生物组检查的扩增子,具体实验步骤见图 1。
1.2.2 数据处理
Trim Galore软件除去序列最末端质量低于20的碱基,去除可能包含的adapter序列,之后去除小于100 bp的短序列[15];FLASH2软件拼接双侧末端测序得到的成对序列,得到merge序列;用Mothur软件查找并去除序列中的引物[15];用Usearch去除总碱基错误率大于2的序列以及长度小于100 bp的序列[15]。
1.3 统计学方法
Alpha多样性采用Observed指数、Chao1指数、ACE指数、Shannon指数、Simpson指数和coverage指数进行评价,基于Wilcoxon秩和检验两组间多样性指数差异[16]。采用非度量多维尺度分析(NMDS)及主坐标分析(PCoA)评估Beta多样性[17]。多样性分析使用R软件进行,LEfSe软件筛选最可能解释组间差异的物种,使用Metastats进行组间相对丰度的分析,P < 0.05为差异有统计学意义。
2 结果
2.1 肠道菌群多样性分析
2.1.1 Alpha多样性分析
R软件对两组进行Observed、Chao1、ACE、Shannon、Simpson、Coverage指数比较,秩和检验显示两组间多样性指数均无差异(P > 0.05),见图 2。
2.1.2 Beta多样性分析NMDS及PCoA
分析食管鳞状细胞癌患者组与健康对照组Beta多样性,两组间有较大的相似性,但存在一定差异。其中PCoA分析使用基于加权UniFrac距离分析的PCoA图来评估β多样性,展现样本间物种丰度差异,见图 3。
图 3 NMDS及PCoA分析图Figure 3 NMDS and PCoA analysis chartsA: the horizontal coordinate (MDS1) and vertical coordinate (MDS2) are the relative distances between the two sorting axes; B: the horizontal coordinate (Axis-1) and vertical coordinate (AXis-2) are the two main components with the greatest interpretation of differences among samples, and the scale is the relative distance.2.2 LEfSe差异性物种筛选
据LEfSe差异性分析,两组样本之间存在显著性差异,以|LDA| > 2,P < 0.05为差异筛选阈值,可得到两组间有62个物种存在差异显著性的丰富度,见图 4。
图 4 两组人群LEfSe差异性分析柱状图Figure 4 Histogram of LEfSe difference analysis between the two groupsThe bars of different colors represent the different species whose LDA score (log10) is greater than 2 in different groups and whose abundance is significantly high in this group. The length of the bars represents the LDA score value.2.3 健康对照组与食管鳞状细胞癌组粪便菌群相对丰度比较
食管鳞状细胞癌组患者变形菌门Proteobacteria、疣微菌门Verrucomicrobia的相对丰度高于健康对照组(P < 0.05);食管鳞状细胞癌组患者Megamonas属的相对丰度低于健康对照组(P=0.025),其余相对丰度见表 1。
表 1 食管鳞状细胞癌组与健康对照组在门、类、属相对丰度差异分析Table 1 Relative abundance dissimilarity between observation group and control group in phylum, class, and genus3 讨论
食管癌是多种因素共同作用的结果,本研究主要探讨菌群结构与食管鳞状细胞癌的关系,尽管菌群与一些疾病的因果关系尚不确切[18],有研究[19]表明肠道微生物菌群对食管鳞状细胞癌的发生发展过程中有着不可忽视的影响,可以保护宿主组织免受病原入侵,并有助于食管黏膜屏障的结构完整性。还有研究表明[20],上消化道的微生物丰富度较低与食管鳞状细胞发育不良有关,这被认为是ESCC的前体病变。特定细菌的联合作用促进肠道炎性反应和癌症,细菌形成的生物膜为癌细胞提供了庇护所[21],而目前研究较多的肠道微生物是梭杆菌,食管鳞状细胞癌可能与具核梭杆菌、牙龈卟啉单胞菌感染相关[22],而这些细菌的存在与食管鳞状细胞癌患者生存时间缩短有关[23-24]。本研究中梭杆菌门未做出有意义的菌属,可能与样本量较少有关。
Alpha多样性指数中,Chao1指数主要反映群落的丰富度,Shannon指数、Simpson指数用于体现肠道菌群落的均匀程度,即各菌落的丰度差异[25]。本研究结果显示,两组菌群Alpha多样性无统计学差异,这与刘晓波等[26]研究结果一致,提示食管鳞状细胞癌患者与健康患者菌群间总体多样性无明显差异;Beta反映的是不同个体菌落结构的相似程度,样本集中则提示有较高的聚集性。NMDS和PCoA分析通过降维方法,表现各样本的距离分布,对结构复杂的数据排序结果的显示更加稳定[27]。本研究Beta多形性结果显示,两组微生物多样性呈相似性趋势,这与Zhao等[28]研究结果一致。NMDS和PCoA分析展现样本间物种丰富度存在差异,说明食管鳞状细胞癌患者与健康人群肠道菌群落丰富度存在一定的差异。
本研究结果发现食管鳞状细胞癌患者变形菌门的相对丰度显著高于健康对照组,与已有研究[29]结果一致,这可能与食管反流可引起食管黏膜壁损伤,使食管上皮细胞处在微生物滋生环境中,导致了慢性炎性反应的发生有关,而慢性炎性反应是食管进展为食管鳞状细胞癌的重要危险因素[30]。疣微菌门可能促进肠道黏膜破坏,增加肠道通透性,导致脂多糖进入血液并迁移到食管组织,与TLR4等受体结合,影响NF-κB信号通路从而引起食管鳞状细胞癌[31]。正常人体消化道菌群98%以上为厚壁菌门和拟杆菌门[32],食管鳞状细胞癌组患者厚壁菌门Megamonas属的相对丰度则低于健康对照组,这与Nasrollahzadeh等研究结果相反,可能与食管炎性反应及肿瘤的发生导致厚壁菌门中的一些菌丰富度降低有关[33]。
大多数情况下,微生物菌群与宿主和谐相处,通常处于共生状态。然而,在某些情况下,这种共生关系可能会破裂。菌群失调将导致有害菌群丰度增高,有益菌群丰度减少,产生致癌性代谢产物及细胞因子[34],然而食管鳞状细胞癌特定菌株及其代谢物仍然未知,需进一步研究。本研究通过对肠道菌群结构与组分的变化研究来探索,结果表明其可以作为一个准确、灵敏的食管癌生物学诊断指标,为食管鳞状细胞癌的诊疗提供新的途径。然而,由于本研究样本量少,没有对患者年龄、性别、病理分期等进一步分析以及两组人群特定的地理位置、长期饮食习惯及实验技术等方面的问题也可能会造成差异[35],因此,需要后续研究来探讨食管鳞状细胞癌发生发展与定植菌群结构与组分变化的机制,为今后食管鳞状细胞癌的诊疗提供更加有效的方法。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:曹燕珍:论文构思、选题及撰写图荪阿依·吾麦尔、胡佳捷、杨丽丽:文献检索、整理及初稿撰写房新志:论文指导 -
表 1 食管鳞状细胞癌组与健康对照组在门、类、属相对丰度差异分析
Table 1 Relative abundance dissimilarity between observation group and control group in phylum, class, and genus
-
[1] 杨欢, 孙宛怡, 王建炳, 等. 中国食管癌病因学、筛查及早期诊断研究进展[J]. 肿瘤防治研究, 2022, 49(3): 169-175. doi: 10.3971/j.issn.1000-8578.2022.21.1033 Yang H, Sun WY, Wang JB, et al. Research Progress of Etiology, Screening and Early Diagnosis of Esophageal Cancer in China[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(3): 169-175. doi: 10.3971/j.issn.1000-8578.2022.21.1033
[2] Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361: k2179.
[3] 刘荣瑜, 王昊, 张子依, 等. 多糖与肠道菌群相互作用的研究进展[J]. 食品科学, 2022, 43(5): 363-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202205042.htm Liu RY, Wang H, Zhang ZY, et al. Progress in Understanding Interaction of Polysaccharides with Intestinal Flora[J]. Shi Pin Ke Xue, 2022, 43(5): 363-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202205042.htm
[4] Grizotte-Lake M, Zhong G, Duncan K, et al. Commensals Suppress Intestinal Epithelial Cell Retinoic Acid Synthesis to Regulate Interleukin-22 Activity and Prevent Microbial Dysbiosis[J]. Immunity, 2018, 49(6): 1103-1115. doi: 10.1016/j.immuni.2018.11.018
[5] Jin L, Shi X, Yang J, et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein Cell, 2021, 12(5): 346-359. doi: 10.1007/s13238-020-00785-9
[6] 李宁宁, 白春梅, 赵林, 等. 消化道肿瘤患者与健康人群粪便菌群差异分析[J]. 中国医学科学院学报, 2019, 41(5): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYKX201905009.htm Li NN, Bai CM, Zhao L, et al. Gut Microbiome Differences between Gastrointestinal Cancer Patients and Healthy People[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2019, 41(5): 636-645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYKX201905009.htm
[7] Park CH, Lee SK. Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic Review[J]. J Neurogastroenterol Motil, 2020, 26(2): 171-179. doi: 10.5056/jnm19240
[8] 国家卫生健康委员会. 食管癌诊疗规范(2018年版)[J]. 中华消化病与影像杂志(电子版), 2019, 9(4): 158-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYE201904006.htm National Health Commission. Chinese guidelines for diagnosis and treatment of esophageal carcinoma(2018 edition)[J]. Zhonghua Xiao Hua Bing Yu Ying Xiang Za Zhi(Dian Zi Ban), 2019, 9(4): 158-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYE201904006.htm
[9] Zhang S, Kong C, Yang Y, et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer[J]. Theranostics, 2020, 10(25): 11595-11606. doi: 10.7150/thno.49515
[10] Cai L, Li Q, Deng Y, et al. Construction and expression of recombinant uricase expressing genetically engineered bacteria and its application in rat model of hyperuricemia[J]. Int J Mol Med, 2020, 45(5): 1488-1500.
[11] Haynes BC, Blidner RA, Cardwell RD, et al. An Integrated Next-Generation Sequencing System for Analyzing DNA Mutations, Gene Fusions, and RNA Expression in Lung Cancer[J]. Transl Oncol, 2019, 12(6): 836-845. doi: 10.1016/j.tranon.2019.02.012
[12] Wu H, Rao Q, Ma GC, et al. Effect of Triptolide on Dextran Sodium Sulfate-Induced Ulcerative Colitis and Gut Microbiota in Mice[J]. Front Pharmacol, 2020, 10: 1652. doi: 10.3389/fphar.2019.01652
[13] 王越. 基于高通量测序的转座子显示技术开发及应用[D]. 广西大学, 2020. Wang Y. Development and application of transposon display based on NGS technology[D]. Guang Xi Da Xue, 2020.
[14] Zhao Q, Yang T, Yan Y, et al. Alterations of Oral Microbiota in Chinese Patients With Esophageal Cancer[J]. Front Cell Infect Microbiol, 2020, 10: 541144. doi: 10.3389/fcimb.2020.541144
[15] 李沛翰. 基于宏基因组的分类数据库及病原快速识别系统研究与应用[D]. 军事科学院, 2021. Li PH. The study and application of metagenomics-based taxonomic database and a rapid pathogen identification system[D]. Jun Shi Ke Xue Yuan, 2021.
[16] Gong S, Ye T, Wang M, et al. Traditional Chinese Medicine Formula Kang Shuai Lao Pian Improves Obesity, Gut Dysbiosis, and Fecal Metabolic Disorders in High-Fat Diet-Fed Mice[J]. Front Pharmacol, 2020, 11: 297. doi: 10.3389/fphar.2020.00297
[17] Xu H, Cao J, Li X, et al. Regional Differences in the Gut Microbiota and Gut-Associated Immunologic Factors in the Ileum and Cecum of Rats With Collagen-Induced Arthritis[J]. Front Pharmacol, 2020, 11: 587534. doi: 10.3389/fphar.2020.587534
[18] 邵好青, 谭周进. 靶向肠道菌群治疗胃肠疾病研究进展[J]. 世界华人消化杂志, 2021, 29(15): 841-848. Shao HQ, Tan ZJ. Microbiota-targeted therapeutics in gastrointestinal diseases[J]. Shi Jie Hua Ren Xiao Hua Za Zhi, 2021, 29(15): 841-848.
[19] Pushalkar S, Hundeyin M, Daley D, et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression[J]. Cancer Discov, 2018, 8(4): 403-416. doi: 10.1158/2159-8290.CD-17-1134
[20] Li D, He R, Hou G, et al. Characterization of the Esophageal Microbiota and Prediction of the Metabolic Pathways Involved in Esophageal Cancer[J]. Front Cell Infect Microbiol, 2020, 10: 268. doi: 10.3389/fcimb.2020.00268
[21] Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359(6375): 592-597. doi: 10.1126/science.aah3648
[22] 冼博鸿, 位俊敏, 乔贵宾, 等. 食管鳞状细胞癌肿瘤组织内菌群检测及特征分析[J]. 中山大学学报(医学科学版), 2022, 43(3): 480-487. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202203015.htm Xian BH, Wei JM, Qiao GB, et al. Characterization of Microbiota in Tumor Tissues of Esophageal Squamous Cell Carcinoma[J]. Zhongshan Da Xue Xue Bao(Yi Xue Ke Xue Ban), 2022, 43(3): 480-487. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202203015.htm
[23] Yamamura K, Baba Y, Nakagawa S, et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis[J]. Clin Cancer Res, 2016, 22(22): 5574-5581.
[24] Gao S, Li S, Ma Z, et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer[J]. Infectious Agents Cancer, 2016, 11: 3.
[25] Chen B, Liu S, Feng D, et al. Vitamin A Deficiency in the Early-Life Periods Alters a Diversity of the Colonic Mucosal Microbiota in Rats[J]. Front Nutr, 2020, 7: 580780.
[26] 刘晓波, 高子夜, 徐文, 等. 高通量测序分析不同病理类型食管癌患者食管菌群的特征[J]. 中华实用诊断与治疗杂志, 2020, 34(7): 699-702. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202007014.htm Liu XB, Gao ZY, Xu W, et al. High-throughput sequencing in analyzing the features of esophagus flora in patients with different pathological types of esophageal cancer[J]. Zhonghua Shi Yong Zhen Duan Yu Zhi Liao Za Zhi, 2020, 34(7): 699-702. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202007014.htm
[27] Huang CC, Shen MH, Chen SK, et al. Gut butyrate-producing organisms correlate to Placenta Specific 8 protein: Importance to colorectal cancer progression[J]. J Adv Res, 2019, 22: 7-20.
[28] Zhao Q, Yang T, Yan Y, et al. Alterations of Oral Microbiota in Chinese Patients With Esophageal Cancer[J]. Front Cell Infect Microbiol, 2020, 10: 541144.
[29] 张玉双, 于富洋, 吴忠冰, 等. 食管鳞状细胞癌原位模型小鼠肠道菌群分析[J]. 中国全科医学, 2022, 25(8): 945-951. Zhang YS, Yu FY, Wu ZB, et al. Analysis of Gut Flora in a Mouse Model of Esophageal Squamous Cell Carcinoma in Situ[J]. Zhongguo Quan Ke Yi Xue, 2022, 25(8): 945-951.
[30] 刘龙, 苏文. 胃肠道微生态与肿瘤关系的研究进展[J]. 中国微生态学杂志, 2016, 28(11): 1349-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201611031.htm Liu L, Su W. The role of gastrointestinal microbiota in carcinogenesis: Research advance[J]. Zhongguo Wei Sheng Tai Xue Za Zhi, 2016, 28(11): 1349-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS201611031.htm
[31] 潘杰, 刘来浩, 牟建伟. 肠道菌群与人类健康研究进展[J]. 山东师范大学学报(自然科学版), 2021, 36(4): 337-365. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZK202104002.htm Pan J, Liu LH, Mou JW. Research progress of gut microbiota and human health[J]. Shandong Shi Fan Da Xue Xue Bao(Zi Ran Ke Xue Ban), 2021, 36(4): 337-365. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZK202104002.htm
[32] 李元成, 何新, 黄文峰, 等. 消化道菌群与消化系统疾病的关系[J]. 赣南医学院学报, 2019, 39(3): 288-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GNYX201903020.htm Li YC, He X, Huang WF, et al. The relationship between Gastrointestinal flora and Digestive system diseases[J]. Gannan Yi Xue Yuan Xue Bao, 2019, 39(3): 288-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GNYX201903020.htm
[33] Nasrollahzadeh D, Malekzadeh R, Ploner A, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia[J]. Sci Rep, 2015, 5: 8820.
[34] 黄兴强, 杨丹丹, 吴紫莹, 等. 菌群失调与食管癌研究进展[J]. 长治医学院学报, 2022, 36(2): 153-155. https://www.cnki.com.cn/Article/CJFDTOTAL-CZYX202202019.htm Huang XQ, Yang DD, Wu ZY, et al. Research progress of dysbiosis and esophageal cancer[J]. Changzhi Yi Xue Yuan Xue Bao, 2022, 36(2): 153-155. https://www.cnki.com.cn/Article/CJFDTOTAL-CZYX202202019.htm
[35] Osman MA, Neoh HM, Ab Mutalib NS, et al. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows[J]. Front Microbiol, 2018, 9: 767.
-
期刊类型引用(0)
其他类型引用(1)