高级搜索

直肠神经内分泌肿瘤的危险因素分析及风险预测模型建立

谢亮, 刘畅, 李建华, 李建辉, 郝欣, 花海洋

谢亮, 刘畅, 李建华, 李建辉, 郝欣, 花海洋. 直肠神经内分泌肿瘤的危险因素分析及风险预测模型建立[J]. 肿瘤防治研究. DOI: 10.3971/j.issn.1000-8578.2025.24.1089
引用本文: 谢亮, 刘畅, 李建华, 李建辉, 郝欣, 花海洋. 直肠神经内分泌肿瘤的危险因素分析及风险预测模型建立[J]. 肿瘤防治研究. DOI: 10.3971/j.issn.1000-8578.2025.24.1089
Liang XIE, Chang LIU, Jian-hua LI, Jian-hui LI, Xin HAO, Hai-yang HUA. Risk factor analysis and risk prediction modeling of rectal neuroendocrine tumors[J]. Cancer Research on Prevention and Treatment. DOI: 10.3971/j.issn.1000-8578.2025.24.1089
Citation: Liang XIE, Chang LIU, Jian-hua LI, Jian-hui LI, Xin HAO, Hai-yang HUA. Risk factor analysis and risk prediction modeling of rectal neuroendocrine tumors[J]. Cancer Research on Prevention and Treatment. DOI: 10.3971/j.issn.1000-8578.2025.24.1089

直肠神经内分泌肿瘤的危险因素分析及风险预测模型建立

基金项目: (202303A017)2023年承德市科学技术研究与发展计划项目

Risk factor analysis and risk prediction modeling of rectal neuroendocrine tumors

  • 摘要: 目的:分析直肠神经内分泌肿瘤(Rectal neuroendocrine tumors ,RNETs)发病的相关危险因素并构建风险预测模型。方法:收集2013年12月至2023年12月于河北省承德市中心医院行电子结肠镜检查患者的临床资料,对比RNETs患者及非RNETs患者的临床资料,纳入可能导致RNETs的危险因素,应用二元logistic回归分析出相关危险因素后建立风险预测模型。结果:164例患者中有66例患RNETs,98例不患有RNETs,单因素logistic分析结果显示:年龄、脂肪肝、焦虑抑郁、总胆固醇水平、甘油三酯水平、CEA为RNETs的发病的影响因素(p<0.05),多因素logistic分析结果显示:年龄(OR=0.96 , 95%CI 0.92-0.99, p=0.015)、焦虑抑郁(OR=5.38,95%CI 1.17-24.78, p=0.031)、胆固醇水平(OR=1.73 ,95%CI 1.14-2.61, p=0.009)、脂肪肝(OR=8.25,95%CI 2.34-29.13, p=0.001)、CEA(OR=1.54,95%CI 1.19-1.99, p<0.001)为RNETs发生的独立危险因素(p<0.05)。将原始数据按7:3比例随机分为训练集与测试集后,用训练集构建列线图预测模型,测试集用于模型内部验证。模型区分度采用受试者工作特征ROC曲线下面积(AUC)进行评价,训练集与测试集AUC分别为0.843和0.772,且无统计学差异(p>0.05),提示模型区分度较好。训练集与测试集校准曲线中模型曲线均与45°标准曲线走形基本一致,提示模型预测概率和实际概率基本一致。训练集与测试集DCA曲线显示在0.2至0.7阈值范围内,模型的临床决策净获益比值较高。结论:年轻、患有脂肪肝、CEA、胆固醇水平较高、焦虑抑郁是RNETs发生的独立危险因素。根据上述危险因素构建列线图模型预测患者发生RNETs的能力较强,可以根据预测概率值考虑是否进行临床干预。

     

    Abstract: Objective : To analyze the risk factors associated with the development of rectal neuroendocrine tumors (RNETs) and construct a risk prediction model. Methods: Clinical data were collected from patients who underwent electronic colonoscopy from December 2013 to December 2023 in Chengde City Central Hospital, Hebei Province, and the risk factors that might lead to RNETs were included in the comparison of patients with and without RNETs, and the risk prediction model was constructed by applying binary logistic regression to analyze the relevant risk factors. Results: Among 164 patients, 66 had RNETs and 98 did not. Single factor logistic regression analysis showed that age, fatty liver, anxiety and depression, total cholesterol, triglyceride levels, and carcinoembryonic antigen (CEA) were the influencing factors for the RNETs (p<0.05), and Multi-factor logistic regression analysis showed that age(OR=0.96 , 95%CI 0.92-0.99, p=0.015), anxiety and depression (OR=5.38, 95%CI 1.17-24.78, p=0.031), cholesterol level(OR=1.73 , 95%CI 1.14-2.61, p=0.009), fatty liver(OR=8.25, 95%CI 2.34-29.13, p=0.001), CEA(OR=1.54, 95%CI 1.19-1.99, p<0.001) were independent risk factors for the RNETs (p<0.05). After randomly dividing the participants into training and testing sets in the ratio of 7: 3, the training set is used to construct the risk prediction model, and the testing set is used for internal validation of the model.The model’s discrimination was evaluated using the area under the receiver operating characteristic(ROC) curve (AUC), the AUC of the training set and the testing set were 0.843 and 0.772, respectively, and there was no statistically significant difference (p > 0.05), indicating a good discriminative ability . The calibration curves of the training set and the testing set are basically consistent with the 45° standard curve, suggesting that the model predicted probability and the actual probability are basically consistent. The decision curve analysis(DCA) curves of the training set and testing set showed that the net benefit ratio of clinical decision-making of the model was high within the threshold range of 0.2 to 0.7. Conclusion: Being young, having fatty liver disease, CEA, higher cholesterol levels, anxiety and depression are independent risk factors of RNETs. The ability to construct a nomogram model to predict the occurrence of RNETs in patients based on the above risk factors is strong, and clinical intervention can be considered based on the predicted probability values.

     

计量
  • 文章访问数:  350
  • HTML全文浏览量:  112
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2024-12-18
  • 录用日期:  2025-03-26
  • 网络出版日期:  2025-04-07

目录

    /

    返回文章
    返回
    x 关闭 永久关闭