Research Progress on Coinfection and Activation of Merkel Cell Polyomavirus in HIV/AIDS Patients
-
摘要:
Merkel细胞多瘤病毒(MCV)因感染人导致恶性皮肤Merkel细胞癌(MCC)而得名,属2A类致癌物。MCV通过整合T抗原基因到细胞基因组促进癌变,80%的MCC病例由MCV激活导致。普通人群MCV抗体阳性率可高达90%,通常MCV感染后处于静息潜伏状态,而器官移植、慢性淋巴细胞性白血病以及HIV感染等免疫抑制或缺陷患者MCC发生率显著升高。HIV/AIDS患者是典型的获得性免疫缺陷人群,易发生合并感染,而目前关于HIV/AIDS患者合并MCV感染、激活及致病机理的研究非常有限。为充分了解HIV合并MCV感染的疾病特征,本文对既往的MCV研究进展进行了梳理,综述了HIV感染与MCV激活的生物学特征,为AIDS等免疫功能低下的重点人群MCC的防治提供一定的参考。
-
关键词:
- Merkel细胞多瘤病毒 /
- HIV/AIDS /
- 激活 /
- Merkel细胞癌
Abstract:Merkel cell polyomavirus (MCV) was named thus because it is the causative agent of Merkel cell carcinoma (MCC), with 80% of MCC cases being MCV-positive. MCV has been classified as a 2A carcinogen. It promotes carcinogenesis by integrating T antigens into the cell genome. The anti-MCV seroprevalence in the general population is as high as 90%. Usually, MCV is latent after infection in immunocompetent patients, and the incidence of MCC in immunosuppressive or defective patients, such as those with organ transplants, chronic lymphocytic leukemia, and HIV infection, is remarkably high. Patients with HIV/AIDS are a typical population with acquired immunodeficiency. At present, the research on patients with HIV/AIDS and MCV infection, activation, and pathogenesis is limited. In this paper, the progress of previous research is reviewed and the relationship between HIV infection and MCV activation is systematically investigated to provide a reference for the prevention and treatment of MCC in key populations, such as patients with HIV/AIDS.
-
Key words:
- Merkel cell polyomavirus /
- HIV/AIDS /
- Activation /
- Merkel cell carcinoma
-
0 前言
2008年,Feng等通过基因组测序首次从恶性神经内分泌皮肤癌——Merkel细胞癌(Merkel cell carcinoma, MCC)组织中发现了一种新的人多瘤病毒,因与MCC肿瘤病例密切相关而将该病毒命名为Merkel cell polyomavirus (MCV)。他们发现超过80%的MCC病例中,MCV基因克隆整合到了MCC肿瘤细胞中,提示MCV是引发MCC的主要元凶[1]。在MCV发现之前,人多瘤病毒已受到普遍关注,20世纪70年代最早发现的两种人多瘤病毒以患者姓名首字母命名,分别为BK多瘤病毒(Polyomavirus BK, BKV)和JC多瘤病毒(Polyomavirus JC, JCV)。2008年发现的MCV不仅更新了为数不多的人多瘤病毒名录,且首次将多瘤病毒与癌症发生紧密关联。MCC是一种罕见的伴有神经内分泌分化的皮肤癌,除MCV病毒感染外,其他危险因素还包括日晒、高龄、免疫抑制(如移植受者、淋巴组织增生性肿瘤患者或 HIV 感染患者)[2-3]。临床上,MCC表现为皮肤或皮下斑块或结节,但临床上很少对该肿瘤做出明确诊断[4]。
人多瘤病毒与人乳头瘤病毒(HPV)基因组结构有高度相似性,提示MCV可能和HPV整合宿主细胞DNA致癌的模式类似。在后续的研究报道中,有研究发现80%以上的MCC为MCV阳性,且MCV能通过整合病毒DNA到肿瘤基因组促进癌细胞克隆性扩张,证明MCV感染可能早于MCC的发生[5-7]。研究还发现病毒引起的肿瘤形成依赖于MCV大T抗原介导,MCV阳性MCC细胞系依赖病毒T抗原表达进行扩散和存活[8]。证据显示MCV的激活与宿主的免疫抑制水平相关,提示HIV/AIDS患者、器官移植患者以及其他免疫功能低下人群有更高的MCV激活和癌变风险[9-11]。本综述聚焦HIV/AIDS患者人群,从流行病学、MCV激活、MCC临床特征及治疗措施等方面展开论述,为HIV合并感染、肿瘤发生发展以及抗病毒治疗提供重要思路和参考。
1 MCV基因组特征及调控机制
多瘤病毒是小型无包膜双链DNA病毒,基因组大小约为5.4 kb,编码5~8种病毒蛋白[12]。MCV是第五个被发现的人多瘤病毒,是目前发现感染人的14种多瘤病毒之一[13-14]。MCV与BKV和JCV的基因组结构相似(图1A),其环形基因组分为三个功能区:早期(EVGR)、晚期(LVGR)和介于之间的非编码控制区(NCCR)[15]。早期区域编码大T抗原(LT)、小T抗原(sT)、57kT抗原(57kT)和大T开放阅读框架的交替框架(ALTO),见图1B。LT和sT共享1个N末端DNAJ或J结构域。LT还包含LXCXE或RB结合基序、MCV独特区(MUR)−1和−2、核定位信号(NLS)、DNA结合结构域(DBD)和解旋酶结构域。在MCC中,LT中的突变导致LXCXE、NLS或DBD之后的截断,用斜杠表示(图1C)[15]。晚期区域以相反方向转录,并编码病毒衣壳蛋白VP1和VP2。NCCR包含复制起源和双向启动子元件,控制EVGR和LVGR的转录和表达[11]。两种主要剪接产物LT和sT抗原参与病毒感染周期、细胞周期进展和宿主细胞的恶性转化[8,16]。MCVT抗原基因被认为是细胞转化的病毒致癌基因,备受关注[17]。MCV病毒癌基因sT和LT的C端截短持续表达是MCC发展所必需的[18]。尽管这些发现证明MCV是MCC皮肤癌的主要致病因子,NCCR是否会影响感染结局和参与癌变尚不清楚。
图 1 Merkel细胞多瘤病毒基因组结构示意图Figure 1 Diagram of MCV genome structureA: the double-stranded DNA of Merkel cell polyomavirus (MCV) is divided into three functional regions: the early region (EVGR), late region (LVGR), and intermediate noncoding control region (NCCR); B: EVGR includes LT, sT, 57kT, ALTO, and MCV-miR-M1; C: linear diagram of LT, sT, and ALTO.既往研究显示NCCR的一个显著特征是重排的发生[19-20]。NCCR重排被认为是来源于体内持续性激活后的形式,通常与疾病表现相关[21]。譬如,BKV再激活相关的多瘤病毒肾病(PVAN)或JCV引起的进行性多灶性白质脑病(PML)都与NCCR重排高度关联[22-23]。当病毒复制在没有有效宿主细胞免疫反应约束的情况下发生时,在体外细胞培养中也会出现NCCR突变或重排[24]。因此,宿主免疫抑制状态下NCCR重排影响早晚期基因转录调控,但目前关于MCV NCCR重排与MCV相关疾病发展之间的关联数据非常有限。日本学者Hashida团队评估了不同种族和地域的健康个体皮肤拭子样本中MCV NCCR的遗传变异性,表明插入和缺失可用于将NCCR分为五种基因型。根据这一分类,串联重复仅在日本MCC患者的NCCR中发现,而来自欧洲或北美的白人呈现出其他基因型[18]。体外实验表明NCCR中转录因子结合位点(TFBS)Sp1是BKV病毒EVGR和LVGR双向表达调控的关键因子[25]。因此,未来针对MCV NCCR中TFBS调控基因表达的研究值得关注。
2 MCV流行分布特征
MCV是目前唯一与肿瘤发生直接关联的人多瘤病毒,在超过90%的MCC病例中,病毒DNA单克隆整合至瘤细胞基因组导致克隆性扩增致癌[26]。普通健康人群抗MCV血清抗体IgG为46%~88%,且随年龄增长而升高,提示人易暴露于MCV[27-28]。75%~80%的MCC肿瘤中存在MCV病毒颗粒,除在MCC肿瘤组织外,在非MCC患者的皮肤、口腔、肝脏、肺部、肾脏等组织也检测到MCV,提示MCV在人体中分布广泛[29]。近年来,免疫功能低下患者的呼吸道和粪便样本中也发现了MCV较高的流行率,增加了MCV在呼吸道和胃肠道中的流行率、持续性及传播途径等重要信息[4,6]。有研究表明MCV可能参与非小细胞肺癌(NSCLC)发生,免疫组织化学分析发现MCV大T抗原在NSCLC肿瘤细胞中表达[30]。
在全球开展的血清学抗体调查研究结果显示,早期暴露感染MCV很可能发生在儿童时期,原因是儿童血清阳性率低,而成人血清阳性率明显升高。意大利的一项研究表明,在1~100岁的普通人群中,MCV血清阳性率随年龄增长显著升高,从1~4岁的41.7%到15~19岁的87.6%,且成人的阳性率维持在79.0%~96.2%[27]。我们前期在810名HIV/AIDS人群和810名健康对照中检测了BKV、JCV以及MCV抗体水平,发现MCV抗体阳性率也明显随年龄而升高,总体阳性率65%[31]。健康人群通常不产生抗MCV LT和sT抗原抗体,而在MCV阳性的MCC患者中可以检出[32]。另外很重要的一点是T抗原抗体在有效的MCC治疗后滴度显著下降,可以作为疾病状态的生物标志物。值得注意的是,MCC患者抗VP1抗体滴度相较普通人群也相对更高[33]。
3 HIV感染增加MCV激活和MCC发生的风险
虽然大多数人都天然地感染过MCV病毒,但正常免疫人群因感染MCV而导致MCC的发生概率很低。然而,其他的因素如免疫抑制状态可能复活病毒并促使病毒基因整合、变异及细胞癌变[34-36]。MCC肿瘤与Kaposi肉瘤和Burkitt淋巴癌的发生相似——均好发于免疫功能不全的人群[37]。免疫功能不全的患者往往发病较快且进展迅速,病情也较严重[38]。人体免疫功能不全是MCC肿瘤发生的重要条件,且一旦进展为MCC后预后效果更差[39-40]。系统性的免疫功能不全患者生存质量欠佳,相比免疫健全的MCC肿瘤患者,3年存活率降低50%以上[41]。
美国一项研究表明HIV/AIDS人群发生MCC的风险比普通人群要高13.4倍,提示免疫缺陷会促使MCV激活及MCC的发生[42]。HIV感染破坏CD4+ T细胞从而削弱人体抗击感染的免疫能力。迄今,没有直接关于CD4+ T细胞计数与HIV感染者MCC病原特异性生存的关联性的报道。无论如何,免疫功能不全的患者感染MCV导致MCC的风险更大已得到证实[43]。最近有研究显示严重免疫功能不全HIV感染者相比轻度免疫功能不全感染者皮肤MCV DNA载量显著提高[44]。另一研究发现未接受抗病毒治疗的HIV-1阳性患者血清中MCV DNA载量显著高于HIV-1阴性人群(P<0.01)[45]。Passerini等在150名HIV阳性人群肛内拭子样本中检测HPV及人多瘤病毒,发现HPV合并MCV比例最高,且MCV病毒载量在合并HPV的HIV阳性人群中显著升高(P<
0.0001 )[46]。此外,HIV/AIDS感染的MCC肿瘤患者病情进展迅速且生存质量差,相比正常免疫人群,HIV/AIDS感染的患者MCC的发病时间提前近20年。2016年美国一项流行病学研究显示HIV-MCC人群主要为青壮年,无65岁以上者[47]。总之,HIV/AIDS患者感染MCV导致MCC的发病概率高于健康人群。4 HIV/AIDS人群MCC临床特征
尽管MCC侵袭性很强,但早期发现和治疗能获得较好的预后结果。Ramachandran等报道一例美国HIV阳性患者的非典型MCV阳性MCC,首先在患者左额顶上发现了一个直径约8 cm的固定皮下肿块,没有任何MCC的典型特征,并已转移到肺和肝脏。患者接受脑部姑息性放疗和顺铂/依托泊苷化疗,随后加用免疫治疗[48]。
普通人群抗MCV血清抗体阳性率为46%~88%,大多数人表现为无症状的隐性感染[26]。然而,MCV在免疫缺陷人群如HIV/AIDS人群则很可能激活而导致疾病的发生。因此采取更有效的策略提高患者T细胞免疫能力对阻止MCV激活是有利的,白细胞介素-2联合抗病毒治疗已被推荐用以阻止MCC肿瘤在HIV/AIDS患者体内转移和扩散。而免疫抑制类药物如斯达汀被认为会提高3倍的MCC患病概率,进一步说明免疫抑制状态下MCV激活的概率大大提高[49]。
我国虽有零散的MCC临床病例报道,但尚未见有关于HIV/AIDS人群MCV感染、激活及致病的相关研究。近年来,我们团队开始在HIV/AIDS人群中开展人多瘤病毒血清学调查及病毒载量监测,已经建立了基于病毒样颗粒(VLP)的ELISA抗体检测以及核酸定量检测方法,发现了血清MCV病毒载量与CD4+ T细胞计数成反比,提示免疫缺陷促进MCV激活[31]。基于此,下一步有必要开展HIV/AIDS人群队列研究探讨MCV等多瘤病毒的激活特征、分子机制以及调控网络。
5 MCC临床特征
MCC是一种高度侵袭性的皮肤原发性神经内分泌癌。大多数MCC病例与MCV密切关联,其余病例多由紫外线(UV)过度照射引起皮肤基底细胞突变引起[37]。通常,MCC表现为有光泽、肉色或蓝红色的皮内结节,可能伴有溃疡或结痂。在大多数情况下,MCC组织呈MCV核酸阳性[50]。一项重要的研究评估了MCC的典型表现:无症状/无压痛、迅速扩张、免疫抑制、50岁以上、暴露于紫外线的皮肤[40]。尽管在前3个月快速增长,多数MCC肿瘤呈无症状的粉红色或红色病灶被认为是良性的。
既往研究显示HIV-1感染、慢性炎性反应引起的免疫抑制,实体器官移植和血液恶性肿瘤明显增加了MCV感染发展为MCC的风险[10,37,46]。尽管MCC的发病率是黑色素瘤的1/40,但MCC比黑色素瘤存活率低得多,是最致命的皮肤癌。过去20年间,MCC导致的死亡率持续上升。1992年细胞角蛋白20(CK20)被鉴定为MCC关键的免疫组织化学标志物,极大地推进了MCC的发现和诊断[50]。流行病学资料显示,美国每年大约
2500 个新发MCC病例中有1000 人将死于该疾病[51]。如此高的死亡率很大程度上是因为还没有一种标准的治疗方法能够提高患者的总体生存率和降低癌细胞转移[50]。现有的证据表明了MCC的肿瘤免疫原性,因此免疫调节治疗策略颇具吸引力。6 MCC临床治疗
手术治疗被认为是局部MCC的标准治疗,目前建议局部广泛切除周围和深部边缘1~2厘米伴有前哨淋巴结的病变。大多数国际指南支持局部与辅助放射治疗结合提高治愈率的肿瘤分级策略[52]。有研究指出,对于一些新诊断的MCC,免疫抑制状态如AIDS或慢性淋巴细胞白血病被认为是MCC辅助诊断检查的一部分,并建议将免疫检查点抑制剂(ICI)纳入到出现MCC症状的患者的治疗[40]。对于晚期、转移性和复发性MCC,针对抗程序性细胞死亡蛋白1(PD-1)和抗程序性细胞死亡配体1 (PD-L1)的检查点阻断抑制剂表现出显著的活性,包括持久的药物应答[53-54]。这些药物已成为晚期MCC的首选治疗方法。ICI治疗高度应答的MCV阳性MCC患者可能反映了病毒肿瘤抗原的存在,尽管尚未有这种模式的确切证据。对于抗PD-(L)1不响应或耐受的MCC患者,化疗依然是首选方案[50]。Kaufman等在2016年开展了一项包括北美、欧洲、澳洲以及亚洲地区的多中心二期临床试验,对88位临床四期MCC患者评估了一种抗-PD-L1单克隆抗体Avelumab的治疗效果[54]。这是目前为止样本量最大的一项多中心临床研究。研究发现达到客观缓解的患者有28例(31.8%),包括8例完全缓解和20例部分缓解。试验结果认为Avelumab具有较好的治疗反应且耐受性良好,是晚期MCC的治疗选择。虽然抗 PD-L1药物已成为MCC的推荐治疗方法,但考虑到HIV/AIDS本身的抗HIV治疗效果及其免疫水平,大多数的临床试验都将HIV阳性患者排除在外[55]。因此,关于HIV阳性MCC患者使用ICI的数据非常有限。最近美国的一项小样本临床研究发现,3名接受ICI治疗MCC的慢性HIV感染个体均表现对抗PD-L1药物的良好反应,可推荐为HIV/AIDS患者一线治疗MCC的免疫药物[56]。总之,由于每个病例的复杂性、侵袭性和个体差异性,MCC建议由多学科团队治疗[57]。
尽管ICI治疗已被用于MCC的临床试验和治疗,但国内外尚无针对HIV/AIDS患者MCC免疫治疗的随机对照试验研究。在缺乏指导的情况下,大多数患MCC的HIV/AIDS患者接受类似于HIV阴性MCC患者的治疗方式,包括联合手术、放疗、化疗和免疫治疗[3]。大多数涉及免疫治疗的临床试验不包括HIV/AIDS、免疫抑制、血液系统恶性肿瘤患者[54]。目前对HIV/AIDS患者血液系统恶性肿瘤和霍奇金淋巴瘤的治疗参照HIV阴性患者[58-59]。
7 总结与展望
MCV传播广泛,人群感染率普遍较高且随年龄增加而升高。病毒激活往往需要免疫抑制、HIV感染、高龄等先决条件,由于MCC发病率较低且诊断手段有限,极大地阻碍了对MCV激活致癌的临床及分子生物学研究。艾滋病属重大传染病,且艾滋病与卡波济肉瘤等多种恶性肿瘤发生密切相关,如何推进HIV/AIDS患者MCV激活早筛查、早诊断、早治疗是未来需要深入探索的课题。从长远来看,建立敏感、特异的诊断方法是开展临床诊断的重要前提,对了解我国HIV/AIDS患者MCV感染、激活及诊治情况具有一定的公共卫生价值。另外,在现有手术切除+免疫治疗的基础上,利用多组学等学科交叉技术探索不同病程MCC的综合治疗方案是值得探究的方向。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:周显凤:文献调研,数据收集,文章构思、撰写与修改齐晓彤、路亮:文献调研,数据收集,文章审核艾 勇:数据收集,文章审核冯长华:文献调研,数据收集,文章修改与审核 -
[1] Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma[J]. Science, 2008, 319(5866): 1096-1100. doi: 10.1126/science.1152586
[2] Sun L, Cliften PF, Duncavage EJ, et al. UV Signature Mutations Reclassify Salivary High-grade Neuroendocrine Carcinomas as Occult Metastatic Cutaneous Merkel Cell Carcinomas[J]. Am J Surg Pathol, 2019, 43(5): 682-687. doi: 10.1097/PAS.0000000000001231
[3] Goldstein RH, DeCaprio JA. Merkel Cell Carcinoma in the HIV-1/AIDS Patient[J]. Cancer Treat Res, 2019, 177: 211-229.
[4] Siqueira SOM, Campos-do-Carmo G, Dos Santos ALS, et al. Merkel cell carcinoma: epidemiology, clinical features, diagnosis and treatment of a rare disease[J]. An Bras Dermatol, 2023, 98(3): 277-286. doi: 10.1016/j.abd.2022.09.003
[5] Kassem A, Schopflin A, Diaz C, et al. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene[J]. Cancer Res, 2008, 68(13): 5009-5013. doi: 10.1158/0008-5472.CAN-08-0949
[6] Houben R, Shuda M, Weinkam R, et al. Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens[J]. J Virol, 2010, 84(14): 7064-7072. doi: 10.1128/JVI.02400-09
[7] Starrett GJ, Marcelus C, Cantalupo PG, et al. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma[J]. mBio, 2017, 8(1): e02079-16.
[8] Pham AM, Ortiz LE, Lukacher AE, et al. Merkel Cell Polyomavirus Large T Antigen Induces Cellular Senescence for Host Growth Arrest and Viral Genome Persistence through Its Unique Domain[J]. Cells, 2023, 12(3): 380. doi: 10.3390/cells12030380
[9] Passerini S, Prezioso C, Prota A, et al. Detection Analysis and Study of Genomic Region Variability of JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV in the Urine and Plasma of HIV-1-Infected Patients[J]. Viruses, 2022, 14(11): 2544. doi: 10.3390/v14112544
[10] Pai SY, Lurain K, Yarchoan R. How immunodeficiency can lead to malignancy[J]. Hematology Am Soc Hematol Educ Program, 2021, 2021(1): 287-295. doi: 10.1182/hematology.2021000261
[11] Prezioso C, Obregon F, Ambroselli D, et al. Merkel Cell Polyomavirus (MCPyV) in the Context of Immunosuppression: Genetic Analysis of Noncoding Control Region (NCCR) Variability among a HIV-1-Positive Population[J]. Viruses, 2020, 12(5): 507. doi: 10.3390/v12050507
[12] Houben R, Celikdemir B, Kervarrec T, et al. Merkel Cell Polyomavirus: Infection, Genome, Transcripts and Its Role in Development of Merkel Cell Carcinoma[J]. Cancers (Basel), 2023, 15(2): 444. doi: 10.3390/cancers15020444
[13] Kamminga S, van der Meijden E, Feltkamp MCW, et al. Seroprevalence of fourteen human polyomaviruses determined in blood donors[J]. PLoS One, 2018, 13(10): e0206273. doi: 10.1371/journal.pone.0206273
[14] Kamminga S, van der Meijden E, de Brouwer C, et al. Prevalence of DNA of fourteen human polyomaviruses determined in blood donors[J]. Transfusion, 2019, 59(12): 3689-3697. doi: 10.1111/trf.15557
[15] DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1732): 20160276. doi: 10.1098/rstb.2016.0276
[16] Rapchak K, Yagobian SD, Moore J, et al. Merkel cell polyomavirus small T antigen is a viral transcription activator that is essential for viral genome maintenance[J]. PLoS Pathog, 2022, 18(12): e1011039. doi: 10.1371/journal.ppat.1011039
[17] Moore PS, Chang Y. Are There More Human Cancer Viruses Left to Be Found?[J]. Annu Rev Virol, 2024, 11(1): 239-259. doi: 10.1146/annurev-virology-111821-103721
[18] Hashida Y, Higuchi T, Matsui K, et al. Genetic Variability of the Noncoding Control Region of Cutaneous Merkel Cell Polyomavirus: Identification of Geographically Related Genotypes[J]. J Infect Dis, 2018, 217(10): 1601-1611. doi: 10.1093/infdis/jiy070
[19] White MK, Safak M, Khalili K. Regulation of gene expression in primate polyomaviruses[J]. J Virol, 2009, 83(21): 10846-10856. doi: 10.1128/JVI.00542-09
[20] Pietropaolo V, Prezioso C, Bagnato F, et al. John Cunningham virus: an overview on biology and disease of the etiological agent of the progressive multifocal leukoencephalopathy[J]. New Microbiol, 2018, 41(3): 179-186.
[21] Zhou X, Zhu C, Li H. BK polyomavirus: latency, reactivation, diseases and tumorigenesis[J]. Front Cell Infect Microbiol, 2023, 13: 1263983. doi: 10.3389/fcimb.2023.1263983
[22] Olsen GH, Hirsch HH, Rinaldo CH. Functional analysis of polyomavirus BK non-coding control region quasispecies from kidney transplant recipients[J]. J Med Virol, 2009, 81(11): 1959-1967. doi: 10.1002/jmv.21605
[23] Gosert R, Kardas P, Major EO, et al. Rearranged JC virus noncoding control regions found in progressive multifocal leukoencephalopathy patient samples increase virus early gene expression and replication rate[J]. J Virol, 2010, 84(20): 10448-10456. doi: 10.1128/JVI.00614-10
[24] Prezioso C, Scribano D, Rodio DM, et al. COS-7-based model: methodological approach to study John Cunningham virus replication cycle[J]. Virol J, 2018, 15(1): 29. doi: 10.1186/s12985-018-0939-1
[25] Bethge T, Hachemi HA, Manzetti J, et al. Sp1 sites in the noncoding control region of BK polyomavirus are key regulators of bidirectional viral early and late gene expression[J]. J Virol, 2015, 89(6): 3396-3411. doi: 10.1128/JVI.03625-14
[26] Borchert S, Czech-Sioli M, Neumann F, et al. High-affinity Rb binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived shortened Merkel cell polyomavirus large T antigens[J]. J Virol, 2014, 88(6): 3144-3160. doi: 10.1128/JVI.02916-13
[27] Nicol JT, Robinot R, Carpentier A, et al. Age-specific seroprevalences of merkel cell polyomavirus, human polyomaviruses 6, 7, and 9, and trichodysplasia spinulosa-associated polyomavirus[J]. Clin Vaccine Immunol, 2013, 20(3): 363-368. doi: 10.1128/CVI.00438-12
[28] van der Meijden E, Bialasiewicz S, Rockett RJ, et al. Different serologic behavior of MCPyV, TSPyV, HPyV6, HPyV7 and HPyV9 polyomaviruses found on the skin[J]. PLoS One, 2013, 8(11): e81078. doi: 10.1371/journal.pone.0081078
[29] Prado JCM, Monezi TA, Amorim AT, et al. Human polyomaviruses and cancer: an overview[J]. Clinics (Sao Paulo), 2018, 73(suppl 1): e558s.
[30] Lasithiotaki I, Tsitoura E, Koutsopoulos A, et al. Aberrant expression of miR-21, miR-376c and miR-145 and their target host genes in Merkel cell polyomavirus-positive non-small cell lung cancer[J]. Oncotarget, 2017, 8(68): 112371-112383. doi: 10.18632/oncotarget.11222
[31] Zhou X, Nakashima K, Ito M, et al. Prevalence and viral loads of polyomaviruses BKPyV, JCPyV, MCPyV, TSPyV and NJPyV and hepatitis viruses HBV, HCV and HEV in HIV-infected patients in China[J]. Sci Rep, 2020, 10(1): 17066. doi: 10.1038/s41598-020-74244-0
[32] Paulson KG, Lewis CW, Redman MW, et al. Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: A prospective validation study[J]. Cancer, 2017, 123(8): 1464-1474. doi: 10.1002/cncr.30475
[33] Pastrana DV, Tolstov YL, Becker JC, et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus[J]. PLoS Pathog, 2009, 5(9): e1000578. doi: 10.1371/journal.ppat.1000578
[34] Li J, Wang X, Diaz J, et al. Merkel cell polyomavirus large T antigen disrupts host genomic integrity and inhibits cellular proliferation[J]. J Virol, 2013, 87(16): 9173-9188. doi: 10.1128/JVI.01216-13
[35] Haymerle G, Janik S, Fochtmann A, et al. Expression of Merkelcell polyomavirus (MCPyV) large T-antigen in Merkel cell carcinoma lymph node metastases predicts poor outcome[J]. PLoS One, 2017, 12(8): e0180426. doi: 10.1371/journal.pone.0180426
[36] Shuda M, Feng H, Kwun HJ, et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus[J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16272-16277. doi: 10.1073/pnas.0806526105
[37] Panou E, Nikolaou C, Payagala S, et al. HIV-related Merkel cell carcinoma: A report of three cases from the UK[J]. Int J STD AIDS, 2022, 33(12): 1084-1086. doi: 10.1177/09564624221123872
[38] Ma JE, Brewer JD. Merkel cell carcinoma in immunosuppressed patients[J]. Cancers (Basel), 2014, 6(3): 1328-1350. doi: 10.3390/cancers6031328
[39] Schadendorf D, Lebbe C, Zur Hausen A, et al. Merkel cell carcinoma: Epidemiology, prognosis, therapy and unmet medical needs[J]. Eur J Cancer, 2017, 71: 53-69. doi: 10.1016/j.ejca.2016.10.022
[40] Heath M, Jaimes N, Lemos B, et al. Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features[J]. J Am Acad Dermatol, 2008, 58(3): 375-381. doi: 10.1016/j.jaad.2007.11.020
[41] Paulson KG, Iyer JG, Blom A, et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage[J]. J Invest Dermatol, 2013, 133(3): 642-646. doi: 10.1038/jid.2012.388
[42] Douek DC, Brenchley JM, Betts MR, et al. HIV preferentially infects HIV-specific CD4+ T cells[J]. Nature, 2002, 417(6884): 95-98. doi: 10.1038/417095a
[43] Wieland U, Silling S, Scola N, et al. Merkel cell polyomavirus infection in HIV-positive men[J]. Arch Dermatol, 2011, 147(4): 401-406. doi: 10.1001/archdermatol.2011.42
[44] Wieland U, Kreuter A. Merkel cell polyomavirus infection and Merkel cell carcinoma in HIV-positive individuals[J]. Curr Opin Oncol, 2011, 23(5): 488-493. doi: 10.1097/CCO.0b013e3283495a5b
[45] Fukumoto H, Sato Y, Hasegawa H, et al. Frequent detection of Merkel cell polyomavirus DNA in sera of HIV-1-positive patients[J]. Virol J, 2013, 10: 84. doi: 10.1186/1743-422X-10-84
[46] Passerini S, Fracella M, Benvenuto D, et al. High rates of anal Merkel Cell Polyomavirus and HPV co-infection among people living with HIV[J]. J Med Virol, 2024, 96(8): e29883. doi: 10.1002/jmv.29883
[47] Gossai A, Waterboer T, Nelson HH, et al. Seroepidemiology of Human Polyomaviruses in a US Population[J]. Am J Epidemiol, 2016, 183(1): 61-69. doi: 10.1093/aje/kwv155
[48] Ramachandran P, Erdinc B, Gotlieb V. An Unusual Presentation of Merkel Cell Carcinoma in a HIV Patient: A Case Report and Literature Review[J]. J Investig Med High Impact Case Rep, 2019, 7: 2324709619836695.
[49] Brugnaro P, Morelli E, Fiscon M, et al. Sustained remission of a primary nodal Merkel cell carcinoma in an HIV-positive patient[J]. Onkologie, 2011, 34(4): 190-192. doi: 10.1159/000327000
[50] Gauci ML, Aristei C, Becker JC, et al. Diagnosis and treatment of Merkel cell carcinoma: European consensus-based interdisciplinary guideline - Update 2022[J]. Eur J Cancer, 2022, 171: 203-231. doi: 10.1016/j.ejca.2022.03.043
[51] Lewis CW, Qazi J, Hippe DS, et al. Patterns of distant metastases in 215 Merkel cell carcinoma patients: Implications for prognosis and surveillance[J]. Cancer Med, 2020, 9(4): 1374-1382. doi: 10.1002/cam4.2781
[52] Bichakjian CK, Olencki T, Aasi SZ, et al. Merkel Cell Carcinoma, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2018, 16(6): 742-774. doi: 10.6004/jnccn.2018.0055
[53] Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma[J]. N Engl J Med, 2016, 374(26): 2542-2552. doi: 10.1056/NEJMoa1603702
[54] Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(10): 1374-1385. doi: 10.1016/S1470-2045(16)30364-3
[55] Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy[J]. Sci Transl Med, 2019, 11(475): eaat2702. doi: 10.1126/scitranslmed.aat2702
[56] Park SY, Church C, Alexander NA, et al. Immune checkpoint inhibitor therapy in HIV-associated Merkel cell carcinoma: A case series of 3 patients[J]. JAAD Case Rep, 2021, 8: 28-33. doi: 10.1016/j.jdcr.2020.11.020
[57] Tello TL, Coggshall K, Yom SS, et al. Merkel cell carcinoma: An update and review: Current and future therapy[J]. J Am Acad Dermatol, 2018, 78(3): 445-454. doi: 10.1016/j.jaad.2017.12.004
[58] Montoto S, Shaw K, Okosun J, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era[J]. J Clin Oncol, 2012, 30(33): 4111-4116. doi: 10.1200/JCO.2011.41.4193
[59] Little RF, Dunleavy K. Update on the treatment of HIV-associated hematologic malignancies[J]. Hematology Am Soc Hematol Educ Program, 2013, 2013: 382-388. doi: 10.1182/asheducation-2013.1.382