-
摘要:
滋养层细胞表面抗原2(Trop2)是一种在正常组织中几乎不表达而在恶性实体肿瘤中高度表达的糖蛋白,且与其不良预后显著相关。目前,临床开发了多种针对Trop2的靶向疗法,例如抗Trop2抗体和靶向Trop2的抗体偶联药物(ADC),一些已经被批准或正在临床试验中用于癌症治疗。本文对Trop2的基因结构、作用机制及其在实体肿瘤中的临床研究和药物研发等方面进行阐述,为临床开发更加安全有效的针对Trop2的靶向药物提供参考。
Abstract:Trophoblast cell surface antigen 2 (Trop2) is a glycoprotein that is barely expressed in normal tissues but highly expressed in malignant tumors; it is remarkably associated with poor prognosis. Various targeted therapeutics against Trop2, such as anti-Trop2 antibodies and antibody-drug conjugate drugs targeting Trop2, have been developed, and some therapeutics have been approved or are in clinical trials for cancer treatment. In this review, we comprehensively discuss the gene structure, mechanism of action, clinical research, drug development, and other aspects of Trop2 to provide references for the clinical development of effective and safe Trop2-targeting drugs.
-
Key words:
- Trop2 /
- Cancer /
- Mechanism /
- Structure /
- Targeted therapy
-
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:张 颖:撰写初稿、文献检索和数据分析刘月平:文章整体思路设计和审阅
-
表 1 靶向Trop2的ADC药物戈沙妥珠单抗在不同肿瘤中的临床疗效
Table 1 Clinical efficacy of ADC drug sacituzumab govitecan targeting Trop2 in different tumors
Tumor Drug Phase ORR Trial TNBC SG Ⅰ/Ⅱ ORR: 33.3% (n=108); mPFS: 5.5 m; mOS: 13.0 m NCT01631552 HR+/HER2-TNBC SG Ⅰ/Ⅱ ORR: 31.5% (n=54); mPFS: 5.5 m; mOS: 12 m NCT01631552 TNBC SG Ⅲ ORR: 35% (n=235); mPFS: 5.6 m; mOS: 12.1 m; NCT02574455 (2021) HR+/HER2- TNBC SG Ⅲ ORR: 21% (n=272); mPFS: 5.5 m; mOS: 14.4 m; NCT03901339 TNBC SG Ⅱ ORR: 64% (n=50); pCR: 30%; NCT04230109 UC SG Ⅰ ORR: 33% (n=25); mPFS: 6.7 m-8.2 m;
mOS: 7.5 m-11.4 mNCT01631552 UC SG Ⅱ ORR: 27% (n=113); mPFS: 5.4 m; mOS: 5.4 m NCT03547973 (Cohort 1) UC SG Ⅱ ORR: 32% (n=38); mPFS: 5.6 m; mOS: 13.5 m NCT03547973 (Cohort 2) UC SG + pembrolizumab Ⅱ ORR: 41% (n=17); mPFS: 5.3 m; mOS: 12.7 m NCT03547973 (Cohort 3) UC SG + ipilimumab +
nivolumabⅠ ORR: 41% (n=9); mPFS: 8.8 m NCT04863885 NSCLC SG Ⅰ ORR: 19% (n=47); mPFS: 5.2 m; mOS: 9.5 m NCT01631552 SCLC SG Ⅱ ORR: 14% (n=47); mPFS: 3.7 m; mOS: 7.5 m NCT01631552 CRC SG Ⅰ/Ⅱ ORR: 3.2% (n=31); mPFS: 3.9 m; mOS: 14.2 m NCT01631552 Notes: TNBC: triple negative breast cancer; UC: urothelial carcinoma; ORR: objective response rate; mPFS: median progression-free survival; mOS: median overall survival; pCR: pathologic complete response; SG: sacituzumab govitecan. -
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834
[2] Will M, Liang J, Metcalfe C, et al. Therapeutic resistance to anti-oestrogen therapy in breast cancer[J]. Nat Rev Cancer, 2023, 23(10): 673-685. doi: 10.1038/s41568-023-00604-3
[3] Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance[J]. Nat Rev Cancer, 2022, 22(3): 157-173. doi: 10.1038/s41568-021-00427-0
[4] Fornaro M, Dell'Arciprete R, Stella M, et al. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas[J]. Int J Cancer, 1995, 62(5): 610-618. doi: 10.1002/ijc.2910620520
[5] Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer, 2010, 9: 253. doi: 10.1186/1476-4598-9-253
[6] Guan H, Guo Z, Liang W, et al. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways[J]. BMC Cancer, 2017, 17(1): 486. doi: 10.1186/s12885-017-3475-2
[7] Fong D, Moser P, Krammel C, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer[J]. Br J Cancer, 2008, 99(8): 1290-1295. doi: 10.1038/sj.bjc.6604677
[8] Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer[J]. Pharmacol Ther, 2022, 239: 108296. doi: 10.1016/j.pharmthera.2022.108296
[9] Dumontet C, Reichert JM, Senter PD, et al. Antibody-drug conjugates come of age in oncology[J]. Nat Rev Drug Discov, 2023, 22(8): 641-661. doi: 10.1038/s41573-023-00709-2
[10] Tsuchikama K, Anami Y, Ha SYY, et al. Exploring the next generation of antibody-drug conjugates[J]. Nat Rev Clin Oncol, 2024, 21(3): 203-223. doi: 10.1038/s41571-023-00850-2
[11] Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors[J]. Annu Rev Med, 2024, 75: 31-48. doi: 10.1146/annurev-med-071322-065903
[12] Vidula N, Yau C, Rugo H. Trophoblast Cell Surface Antigen 2 gene (TACSTD2) expression in primary breast cancer[J]. Breast Cancer Res Treat, 2022, 194(3): 569-575. doi: 10.1007/s10549-022-06660-x
[13] Aslan M, Hsu EC, Garcia-Marques FJ, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141. doi: 10.1038/s41523-021-00341-6
[14] Mertens RB, Makhoul EP, Li X, et al. Comparative expression of trophoblast cell-surface antigen 2 (TROP2) in the different molecular subtypes of invasive breast carcinoma: An immunohistochemical study of 94 therapy-naive primary breast tumors[J]. Ann Diagn Pathol, 2024, 68: 152226. doi: 10.1016/j.anndiagpath.2023.152226
[15] Lin H, Huang JF, Qiu J R, et al. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer[J]. Exp Mol Pathol, 2013, 94(1): 73-78. doi: 10.1016/j.yexmp.2012.08.004
[16] Izci H, Punie K, Waumans L, et al. Correlation of TROP-2 expression with clinical-pathological characteristics and outcome in triple-negative breast cancer[J]. Sci Rep, 2022, 12(1): 22498. doi: 10.1038/s41598-022-27093-y
[17] Ambrogi F, Fornili M, Boracchi P, et al. Trop-2 is a determinant of breast cancer survival[J]. PLoS One, 2014, 9(5): e96993. doi: 10.1371/journal.pone.0096993
[18] Omori S, Muramatsu K, Kawata T, et al. Trophoblast cell-surface antigen 2 expression in lung cancer patients and the effects of anti-cancer treatments[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2455-2463. doi: 10.1007/s00432-021-03784-3
[19] Mito R, Matsubara E, Komohara Y, et al. Clinical impact of TROP2 in non-small lung cancers and its correlation with abnormal p53 nuclear accumulation[J]. Pathol Int, 2020, 70(5): 287-294. doi: 10.1111/pin.12911
[20] Inamura K, Yokouchi Y, Kobayashi M, et al. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes[J]. Oncotarget, 2017, 8(17): 28725-28735. doi: 10.18632/oncotarget.15647
[21] Ohmachi T, Tanaka F, Mimori K, et al. Clinical significance of TROP2 expression in colorectal cancer[J]. Clin Cancer Res, 2006, 12(10): 3057-3063. doi: 10.1158/1078-0432.CCR-05-1961
[22] Moretto R, Germani MM, Giordano M, et al. Trop-2 and Nectin-4 immunohistochemical expression in metastatic colorectal cancer: searching for the right population for drugs' development[J]. Br J Cancer, 2023, 128(7): 1391-1399.
[23] Mühlmann G, Spizzo G, Gostner J, et al. TROP2 expression as prognostic marker for gastric carcinoma[J]. J Clin Pathol, 2009, 62(2): 152-158. doi: 10.1136/jcp.2008.060590
[24] Sun H, Chen Q, Liu W, et al. TROP2 modulates the progression in papillary thyroid carcinoma[J]. J Cancer, 2021, 12(22): 6883-6893. doi: 10.7150/jca.62461
[25] Mas L, Cros J, Svrcek M, et al. Trop-2 is a ubiquitous and promising target in pancreatic adenocarcinoma[J]. Clin Res Hepatol Gastroenterol, 2023, 47(4): 102108. doi: 10.1016/j.clinre.2023.102108
[26] Hoppe S, Meder L, Gebauer F, et al. Trophoblast Cell Surface Antigen 2 (TROP2) as a Predictive Bio-Marker for the Therapeutic Efficacy of Sacituzumab Govitecan in Adenocarcinoma of the Esophagus[J]. Cancers (Basel), 2022, 14(19): 4789. doi: 10.3390/cancers14194789
[27] Wu B, Yu C, Zhou B, et al. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells[J]. Exp Ther Med, 2017, 14(3): 1947-1952. doi: 10.3892/etm.2017.4788
[28] Erber R, Spoerl S, Mamilos A, et al. Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma[J]. Int J Mol Sci, 2021, 23(1): 87. doi: 10.3390/ijms23010087
[29] Liu T, Liu Y, Bao X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013, 8(9): e75864. doi: 10.1371/journal.pone.0075864
[30] Lin JC, Wu YY, Wu JY, et al. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma[J]. EMBO Mol Med, 2012, 4(6): 472-485. doi: 10.1002/emmm.201200222
[31] Remšík J, Binó L, Kahounová Z, et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition[J]. Carcinogenesis, 2018, 39(11): 1411-1418. doi: 10.1093/carcin/bgy095
[32] Guerra E, Trerotola M, Aloisi AL, et al. The Trop-2 signalling network in cancer growth[J]. Oncogene, 2013, 32(12): 1594-1600. doi: 10.1038/onc.2012.151
[33] Mori Y, Akita K, Ojima K, et al. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility[J]. J Biol Chem, 2019, 294(30): 11513-11524. doi: 10.1074/jbc.RA119.008084
[34] Wang M, Guo Y, Wang M, et al. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation[J]. Mol Cell Proteomics, 2017, 16(6): 982-997. doi: 10.1074/mcp.M116.065797
[35] Tang W, Hu Y, Tu K, et al. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop[J]. J Adv Res, 2024, 58: 193-210. doi: 10.1016/j.jare.2023.05.012
[36] Sun X, Jia L, Wang T, et al. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment[J]. J Cancer, 2021, 12(17): 5310-5319. doi: 10.7150/jca.57711
[37] Yang T, Jia L, Bian S, et al. TROP2 Down-regulated DSG2 to Promote Gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/β-Catenin Pathways[J]. Curr Cancer Drug Targets, 2022, 22(8): 691-702. doi: 10.2174/1568009622666220407111013
[38] Tang G, Tang Q, Jia L, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway[J]. Int J Mol Med, 2019, 44(6): 2161-2170.
[39] Gu Q Z, Nijiati A, Gao X, et al. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling[J]. Mol Med Rep, 2018, 18(2): 1782-1788.
[40] Li X, Teng S, Zhang Y, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT[J]. Oncotarget, 2017, 8(29): 47052-47063. doi: 10.18632/oncotarget.16789
[41] Wang Z, Jia L, Sun Y, et al. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer[J]. Front Mol Biosci, 2021, 8: 682594. doi: 10.3389/fmolb.2021.682594
[42] Liu X, Li J, Deng J, et al. Targeting Trop2 in solid tumors: a look into structures and novel epitopes[J]. Front Immunol, 2023, 14: 1332489. doi: 10.3389/fimmu.2023.1332489
[43] Guerra E, Relli V, Ceci M, et al. Trop-2, Na(+)/K(+) ATPase, CD9, PKCα, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion[J]. Oncogene, 2022, 41(12): 1795-1808. doi: 10.1038/s41388-022-02220-1
[44] Sun M, Zhang H, Jiang M, et al. Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2[J]. iScience, 2021, 24(10): 103190. doi: 10.1016/j.isci.2021.103190
[45] Shih LB, Xuan H, Aninipot R, et al. In vitro and in vivo reactivity of an internalizing antibody, RS7, with human breast cancer[J]. Cancer Res, 1995, 55(23 Suppl): 5857s-5863s.
[46] Alberti S, Miotti S, Stella M, et al. Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2[J]. Hybridoma, 1992, 11(5): 539-545. doi: 10.1089/hyb.1992.11.539
[47] Trerotola M, Guerra E, Ali Z, et al. Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis[J]. Neoplasia, 2021, 23(4): 415-428. doi: 10.1016/j.neo.2021.03.006
[48] Truong A, Feng N, Sayegh D, et al. AR47A6.4. 2, a naked monoclonal antibody targeting Trop-2, exhibits anti-tumor efficacy in multiple human cancer models as a monotherapeutic agent and demonstrates efficacy in combination therapy[J]. Cancer Res, 2008, 68(9_Supplement): Abstract 3990.
[49] Ikeda M, Yamaguchi M, Kato K, et al. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope[J]. Biochem Biophys Res Commun, 2015, 458(4): 877-882. doi: 10.1016/j.bbrc.2015.02.051
[50] Ikeda M, Kato K, Yamaguchi M, et al. Cell Surface Antibody Retention Influences In Vivo Antitumor Activity Mediated by Antibody-dependent Cellular Cytotoxicity[J]. Anticancer Res, 2016, 36(11): 5937-5944. doi: 10.21873/anticanres.11181
[51] Syed YY. Sacituzumab Govitecan: First Approval[J]. Drugs, 2020, 80(10): 1019-1025. doi: 10.1007/s40265-020-01337-5
[52] Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2019, 380(8): 741-751. doi: 10.1056/NEJMoa1814213
[53] Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2021, 384(16): 1529-1541. doi: 10.1056/NEJMoa2028485
[54] Bardia A, Rugo HS, Tolaney SM, et al. Final Results From the Randomized Phase Ⅲ ASCENT Clinical Trial in Metastatic Triple-Negative Breast Cancer and Association of Outcomes by Human Epidermal Growth Factor Receptor 2 and Trophoblast Cell Surface Antigen 2 Expression[J]. J Clin Oncol, 2024, 42(15): 1738-1744. doi: 10.1200/JCO.23.01409
[55] Rugo HS, Bardia A, Marmé F, et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet, 2023, 402(10411): 1423-1433. doi: 10.1016/S0140-6736(23)01245-X
[56] Spring LM, Tolaney SM, Fell G, et al. Response-guided neoadjuvant sacituzumab govitecan for localized triple-negative breast cancer: results from the NeoSTAR trial[J]. Ann Oncol, 2024, 35(3): 293-301. doi: 10.1016/j.annonc.2023.11.018
[57] Heist RS, Guarino MJ, Masters G, et al. Therapy of Advanced Non-Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan[J]. J Clin Oncol, 2017, 35(24): 2790-2797. doi: 10.1200/JCO.2016.72.1894
[58] Gray JE, Heist RS, Starodub AN, et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan[J]. Clin Cancer Res, 2017, 23(19): 5711-5719. doi: 10.1158/1078-0432.CCR-17-0933
[59] McGregor BA, Sonpavde GP, Kwak L, et al. The Double Antibody Drug Conjugate (DAD) phase Ⅰ trial: sacituzumab govitecan plus enfortumab vedotin for metastatic urothelial carcinoma[J]. Ann Oncol, 2024, 35(1): 91-97.
[60] Liu T, Si X, Liu L, et al. Injectable Nano-in-Gel Vaccine for Spatial and Temporal Control of Vaccine Kinetics and Breast Cancer Postsurgical Therapy[J]. ACS Nano, 2024, 18(4): 3087-3100. doi: 10.1021/acsnano.3c08376
[61] Jia L, Fu Y, Zhang N, et al. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma[J]. Nanomedicine, 2023, 51: 102687. doi: 10.1016/j.nano.2023.102687