Circulating Inflammatory Proteins in Relation to Risk of Breast Cancer: A Two-sample Mendelian Randomization Study
-
摘要:目的
利用双样本孟德尔随机法研究91种循环炎症蛋白与不同亚型乳腺癌(雌激素受体阳性和阴性乳腺癌)之间的因果关系。
方法从全基因组关联研究(GWAS)数据库中提取相应的暴露和结局数据。对数据进行双样本孟德尔随机化分析,以逆方差加权法(IVW)为主要研究方法,MR-Egger、加权中位数、简单模式和加权模式对结果进行补充;并进行敏感性分析验证数据的可靠性。
结果IVW结果显示SULT1A1与总BC风险增加相关(P=0.0007);IL-5与总BC风险降低相关(P=0.0011)。SULT1A1(P=0.0011)和CX3CL1(P=0.0005)与ER+ BC风险增加相关。Beta-NGF与ER- BC风险增加相关(P=0.0001)。补充分析方法验证研究结果方向、大小均一致。敏感性分析结果表明数据可靠,不存在偏倚。
结论通过孟德尔随机化方法,本研究证实了SULT1A1是整体性乳腺癌的危险因素,而IL-5是整体性乳腺癌的保护因素。SULT1A1和CX3CL1是雌激素受体阳性乳腺癌的危险因素,Beta-NGF是雌激素受体阴性乳腺癌的危险因素。
Abstract:ObjectiveTo investigate the causal association between 91 kinds of circulating inflammatory proteins and different subtypes of breast cancer (estrogen receptor-positive and -negative breast cancer) using a two-sample Mendelian randomization (MR) method.
MethodsCorresponding exposure and outcome data were extracted from the genome-wide association study database. The data were analyzed by two-sample MR with inverse-variance weighting (IVW) as the primary study method, and MR-Egger, weighted median, simple mode, and weighted mode were used to complement the results. The results were complemented by sensitivity analysis to verify the reliability of the data.
ResultsThe IVW results showed that SULT1A1 (P=0.0007) was associated with an increased risk of total BC, whereas IL-5 (P=0.0011) was associated with a decreased risk of total BC. SULT1A1 (P=0.0011) and CX3CL1 (P=0.0005) were associated with an increased risk of ER+BC, whereas beta-NGF (P=0.0001) was associated with an increased risk of ER−BC. Supplementary analysis methods validated that the findings were consistent in direction and magnitude. The results of the sensitivity analysis showed that the data were reliable and unbiased.
ConclusionUsing the MR method, this study confirms that SULT1A1 is a risk factor for overall breast cancer, whereas IL-5 is a protective factor for overall breast cancer. SULT1A1 and CX3CL1 are risk factors for estrogen receptor-positive breast cancer, and beta-NGF is a risk factor for estrogen receptor-negative breast cancer.
-
0 引言
乳腺癌是在多种致癌因素的作用下,乳腺上皮组织增殖失控而形成的一种恶性肿瘤,具有特定的生物学行为和病理学特征,是女性最常见的一种恶性肿瘤[1],其发病机制复杂[2]。目前乳腺癌的筛查以影像学检查为主,乳房X线、超声及MRI是最常用的方式,由于早期肿块形成不明显且边界不清楚,导致诊断具有一定的假阳性[3],因此,寻找与乳腺癌相关的生物学标志物,对其准确诊断具有重要意义。同种异体移植物炎性因子-1(Allograft inflammatory factor-1, AIF-1)是一种由巨噬细胞、单核细胞和中性粒细胞产生的胞质蛋白,可以分泌到细胞外,并可以作为细胞因子发挥作用,其过度表达与肿瘤发生和转移相关[4]。生长分化因子15(Growth differentiation factor-15, GDF15)是转化生长因子β超家族的一个分支成员,在癌症、心脏代谢障碍和其他疾病中发挥多种病理生理作用,在肿瘤微环境中,GDF15由肿瘤相关成纤维细胞和巨噬细胞表达,与低存活率相关,是癌症进展的标志[5]。双皮质素样激酶1(Doublecortin-like kinase 1, DCLK1)是一种蛋白质分子,在各种癌症转移中起着至关重要的作用,与许多干细胞受体、信号通路和基因的表达相关,在促进肿瘤发生中起直接或间接作用[6]。目前关于AIF-1、GDF15、DCLK1在乳腺癌中的研究鲜有报道,基于此,本研究通过检测其在乳腺癌中的表达,并分析其对乳腺癌的诊断价值,以期为临床诊治提供一定的参考依据。
1 资料与方法
1.1 研究对象
选取本院2020年4月至2023年10月期间收治的114例女性乳腺癌患者(乳腺癌组),年龄37~64岁,平均年龄(50.69±5.86)岁,平均体质量指数(Body mass index, BMI)(21.23±1.34)kg/m2;另选取同期在本院健康体检的女性志愿者114例(对照组),年龄33~60(50.82±5.62)岁,平均BMI(21.43±1.52)kg/m2。两组一般资料比较差异无统计学意义(P>0.05),具有可比性。本研究经本院伦理委员会审核批准(批号:2019—12091)。
1.2 纳入与排除标准
纳入标准:(1)乳腺癌患者符合《中国抗癌协会乳腺癌诊治指南与规范(2019年版)》[7]中相关诊断标准并经病理学确诊;(2)首次确诊者;(3)患者及家属知情并签署知情同意书;(4)临床资料完整者。排除标准:(1)合并有其他恶性肿瘤者;(2)合并有免疫系统疾病者;(3)严重心肝肾功能异常者;(4)妊娠期、哺乳期女性;(5)凝血功能障碍者;(6)合并有严重的精神障碍疾病者;(7)发生远处转移者。
1.3 方法
1.3.1 血清及一般资料收集
收集乳腺癌患者确诊后次日及健康体检志愿者体检当日清晨空腹静脉血5 ml,室温下静置30 min,于4℃下1 000 g离心15 min,收集上清液,置于−80℃保存待测。另收集乳腺癌患者年龄、病理类型、临床分期、分化程度、有无淋巴结转移、是否绝经、肿瘤直径、雌激素受体(Estrogen receptor, ER)、人表皮生长因子受体-2(Human epidermal growth factor receptor 2, HER-2)、孕激素受体(Progesterone receptor, PR)、细胞核增殖抗原(Ki-67)等信息。
1.3.2 血清AIF-1、GDF15、DCLK1水平检测
采用酶联免疫吸附法(Enzyme-linked immunosorbnent assay, ELISA)检测所有研究对象血清中AIF-1(上海柯雷生物科技有限公司,货号:E5124)、GDF15(上海莼试生物技术有限公司,货号:CS-2539E)、DCLK1(武汉艾美捷科技有限公司,货号:EKU03792)水平。
1.4 统计学方法
采用统计软件SPSS25.0处理数据,符合正态分布的计量资料以均数±标准差($ \bar x \pm s $)表示,两组间比较行t检验。采用单因素和多因素Logistic回归分析影响乳腺癌的危险因素;采用受试者工作特征(Receiver operating characteristic, ROC)曲线分析血清AIF-1、GDF15、DCLK1水平对乳腺癌的诊断价值,ROC曲线下面积(Area under the curve, AUC)比较采用Z检验。以P<0.05代表差异具有统计学意义。
2 结果
2.1 两组血清AIF-1、GDF15、DCLK1水平比较
与对照组相比,乳腺癌组血清AIF-1、GDF15、DCLK1水平均明显升高(P<0.05),见表1。
表 1 两组血清AIF-1、GDF15、DCLK1水平比较 ($ \bar x \pm s $)Table 1 Comparison of serum AIF-1, GDF15, and DCLK1 levels between two groups ($ \bar x \pm s $)Groups AIF-1(pg/ml) GDF15(pg/ml) DCLK1(ng/ml) Breast cancer 263.45±85.62 560.65±183.48 4.16±1.24 Control 176.57±55.48 375.24±123.51 2.64±0.75 t 9.092 8.950 11.199 P <0.001 <0.001 <0.001 Notes: AIF-1: allograft inflammatory factor-1; GDF15: growth differentiation factor-15;DCLK1: doublecortin-like kinase 1. 2.2 血清AIF-1、GDF15、DCLK1水平与临床病理特征的关系
Ⅲ~Ⅳ期、中低分化、有淋巴结转移及Ki-67阳性的乳腺癌患者血清AIF-1、GDF15、DCLK1表达水平分别高于Ⅰ~Ⅱ期、高分化、无淋巴结转移及Ki-67阴性患者(P<0.05),而不同年龄、病理类型、绝经、肿瘤直径、ER、HER-2及PR水平患者间比较无显著性差异(P>0.05),见表2。
表 2 乳腺癌患者血清AIF-1、GDF15、DCLK1水平与临床病理特征的关系($ \bar x \pm s $)Table 2 Relationship between serum AIF-1, GDF15, DCLK1 levels and clinical pathological characteristics ($ \bar x \pm s $)Clinical features n AIF-1(pg/ml) t P GDF15(pg/ml) t P DCLK1(ng/ml) t P Age (years) ≥50 53 265.06±81.65 561.33±181.21 4.18±1.12 <50 61 262.05±82.34 560.06±182.63 4.14±1.14 Pathological type 0.117 0.907 0.069 0.945 0.225 0.822 Infiltrating ductal carcinoma 98 263.81±81.56 561.12±178.64 4.17±1.16 Other 16 261.24±82.47 557.77±181.02 4.10±1.11 Clinical stages 5.620 <0.001 6.753 0.000 12.343 <0.001 Ⅰ-Ⅱ 68 229.51±75.64 469.57±142.31 3.14±0.87 Ⅲ-Ⅳ 46 313.62±82.34 695.29±214.81 5.67±1.32 Differentiation degree 6.968 <0.001 5.466 0.000 6.762 <0.001 Well 35 201.36±58.64 442.08±124.51 3.10±0.75 Moderate to poor 79 290.96±65.27 613.18±165.43 4.63±1.24 Lymph node metastasis 6.182 <0.001 5.807 0.000 7.363 <0.001 Yes 72 297.79±87.45 630.36±187.62 4.79±1.36 No 42 204.58±56.82 441.15±126.35 3.08±0.87 Menopause 0.278 0.781 0.034 0.973 0.291 0.772 Yes 67 261.69±80.31 560.16±184.36 4.13±1.26 No 47 265.96±81.24 561.35±181.09 4.20±1.27 Tumor diameter (cm) 0.235 0.815 0.195 0.846 1.185 0.239 ≥2 76 264.65±76.48 562.86±169.47 4.25±1.16 <2 38 261.05±78.52 556.23±175.32 3.98±1.12 Ki-67 7.706 <0.001 6.488 0.000 6.107 <0.001 Negative 51 196.15±65.37 451.19±127.54 3.42±1.05 Positive 63 317.93±96.28 649.26±185.28 4.76±1.25 ER 0.142 0.887 0.088 0.930 0.568 0.571 Negative 59 264.54±84.17 562.04±173.48 4.22±1.21 Positive 55 262.28±85.23 559.16±176.24 4.10±1.03 HER-2 0.172 0.863 0.065 0.948 0.338 0.736 Negative 44 265.14±82.43 562.02±179.47 4.21±1.26 Positive 70 262.39±83.17 559.79±176.34 4.13±1.21 PR 0.125 0.901 0.025 0.980 0.278 0.782 Negative 63 264.35±85.24 561.04±183.64 4.19±1.32 Positive 51 262.34±85.18 560.17±182.75 4.12±1.36 Notes: ER: estrogen receptor; HER-2: human epidermal growth factor receptor 2; PR: progesterone receptor. 2.3 多因素Logistic回归分析影响乳腺癌发生的因素
以乳腺癌患病情况(0=否,1=是)作为因变量,将年龄(≥50=1,<50=0)、病理类型(浸润性导管癌=1,其他=0)、临床分期(Ⅲ~Ⅳ期=1,Ⅰ~Ⅱ期=0)、分化程度(中、低分化=1,高分化=0)、淋巴结转移(有=1,无=0)、绝经(否=1,是=0)、肿瘤直径(≥2=1,<2=0)、Ki-67表达(阳性=1,阴性=0)、ER表达(阳性=1,阴性=0)、HER-2表达(阳性=1,阴性=0)、PR表达(阳性=1,阴性=0)以及血清AIF-1(实测值)、GDF15(实测值)、DCLK1水平(实测值)作为自变量,进行单因素Logistic回归分析,结果显示血清AIF-1、GDF15、DCLK1、分化程度、淋巴结转移是影响乳腺癌的因素。进一步将上述差异有统计学意义的指标进行多因素Logistic回归分析,结果显示,血清AIF-1、GDF15、DCLK1是影响乳腺癌的危险因素(P<0.05),见表3~4。
表 3 影响乳腺癌发生的单因素Logistic回归分析Table 3 Univariate Logistic regression analysis of factors affecting the occurrence of breast cancerIndependent variable β SE Waldχ2 P OR 95%CI Age 0.430 0.316 1.850 0.174 1.537 0.827-2.855 Pathological type 0.584 0.364 2.578 0.108 1.794 0.879-3.662 Clinical stages 0.660 0.381 3.002 0.083 1.935 0.917-4.083 Differentiation degree 0.863 0.332 6.762 0.009 2.371 1.237-4.545 Lymph node metastasis 0.938 0.359 6.833 0.009 2.556 1.265-5.166 Menopause 0.200 0.399 0.250 0.617 1.221 0.559-2.669 Tumor diameter 0.506 0.347 2.123 0.145 1.658 0.840-3.273 Ki-67 0.380 0.315 1.454 0.228 1.462 0.789-2.711 ER 0.469 0.294 2.549 0.110 1.599 0.899-2.845 HER-2 0.603 0.346 3.034 0.082 1.827 0.928-3.600 PR 0.533 0.328 2.640 0.104 1.704 0.896-3.241 AIF-1 0.955 0.274 12.151 <0.001 2.599 1.519-4.447 GDF15 1.104 0.291 14.400 <0.001 3.017 1.706-5.337 DCLK1 1.271 0.376 11.430 0.001 3.565 1.706-7.449 表 4 影响乳腺癌发生的多因素Logistic回归分析Table 4 Multivariate Logistic regression analysis of factors affecting the occurrence of breast cancerIndependent variable β SE Waldχ2 P OR 95%CI AIF-1 1.015 0.307 10.920 0.001 2.758 1.511-5.034 GDF15 1.185 0.268 19.554 <0.001 3.271 1.934-5.531 DCLK1 1.269 0.292 18.884 <0.001 3.557 2.007-6.304 Differentiation degree 0.689 0.375 3.377 0.066 1.992 0.955-4.154 Lymph node metastasis 0.623 0.351 3.153 0.076 1.865 0.937-3.711 2.4 血清AIF-1、GDF15、DCLK1水平对乳腺癌的诊断价值
以乳腺癌患病情况(0=否,1=是)作为因变量,以血清AIF-1、GDF15、DCLK1水平(实测值)作为检验变量绘制ROC曲线。血清AIF-1诊断乳腺癌的曲线下面积为0.834(95%CI:0.780~0.880),敏感度和特异性分别为72.81%、86.84%,最佳截断值为218.59 pg/ml;血清GDF15诊断乳腺癌的AUC为0.753(95%CI:0.692~0.808),敏感度和特异性分别为58.77%、88.60%,最佳截断值为511.56 pg/ml;血清DCLK1诊断乳腺癌的AUC为0.861(95%CI:0.809~0.903),敏感度和特异性分别为73.68%、89.47%,最佳截断值为3.51 ng/ml;血清AIF-1、GDF15、DCLK1联合诊断乳腺癌的AUC为0.930(95%CI:0.889~0.960),敏感度和特异性分别为85.96%、84.21%。三者联合诊断乳腺癌的AUC显著高于血清AIF-1、GDF15、DCLK1单独评估(Z三者联合-AIF-1=3.479、Z三者联合-GDF15=5.147、Z三者联合-DCLK1=3.121,均P<0.05),见图1。
3 讨论
乳腺癌是全球范围内发病率和死亡率最高的恶性肿瘤,遗传和临床异质性特征明显,具有独特的体细胞突变并伴随着基因和蛋白质表达的变化,其中调控肿瘤发生和发展分子机制的复杂性决定了其异质性,通常通过侵袭性、形态学、免疫组织化学标记的表达以及基因组来分类[8]。乳房X线是早期诊断的主要方法之一,但具有较高的假阳性,对致密乳腺组织的敏感度较低,通常被检测到时,部分患者已经存在淋巴结转移、扩散,导致不良预后[9]。因此,及时对乳腺癌进行有效诊断,及早采取干预措施对其预后尤为关键。
AIF-1是位于6p21.3上的一种钙结合蛋白,其合成受干扰素-γ的调控,具有细胞信号蛋白的特征,其过表达可促进细胞的增殖、迁移和活化[10]。AIF-1是一类重要的天然免疫分子,能特异性表达于单核/巨噬细胞及嗜中性粒细胞上,通过募集巨噬细胞到病灶部位,发挥免疫调控作用[11]。Wang等[12]研究表明,AIF-1在多种肿瘤中均高度表达,在人非小细胞肺癌组织中显著上调,与患者预后密切相关,且与肿瘤分期和转移正相关。本研究显示乳腺癌组血清AIF-1水平显著升高,与Sikora等[13]研究结果相符,提示AIF-1参与乳腺疾病的发生,推测AIF-1水平升高可能会促进癌细胞增殖和迁移,进而参与乳腺癌的发生。本研究还发现血清AIF-1的表达与临床病理特征密切相关,且血清AIF-1是影响乳腺癌的危险因素,表明AIF-1水平的升高可增加乳腺癌的风险,其具有一定的乳腺癌诊断价值。
GDF15是一种相对分子质量为25 kDa的同型二聚体,属于转化生长因子β超家族成员,是一种血浆中循环的分泌蛋白,又称为巨噬细胞抑制因子-1,位于人类染色体19p13.11上,由N-末端信号肽组成,用于分泌和运输[14]。GDF15是一种在组织损伤、缺氧、炎性细胞因子等刺激下产生的细胞因子,参与细胞与组织内稳态的调控[15]。Ahmed等[16]研究发现GDF15在许多晚期癌症中过度表达,与患者存活率负相关,与肿瘤进展、组织病理学分级相关,可能是肿瘤生物标志物之一。本研究结果显示,乳腺癌组血清GDF15水平显著高于对照组,并且在Ⅲ~Ⅳ期、中低分化、有淋巴结转移及Ki-67阳性患者中显著升高,与Ahmed等[16]研究结果相似,提示血清GDF15水平与乳腺癌的发生发展有关。另有研究表明,在具有较大肿瘤、晚期疾病阶段和远处转移的乳腺癌患者中,血清GDF15水平显著升高,其表达与淋巴结转移呈正相关,可以作为一个独立的早期诊断标志物,并且比CA15-3具有更好的预测能力[17]。Zhao等[18]研究发现GDF15在乳腺癌患者中呈高表达,可作为一种新的标志物和乳腺癌放疗的潜在治疗靶点。多因素Logistic回归分析显示,血清GDF15是影响乳腺癌的危险因素,表明GDF15水平的升高可增加乳腺癌的风险。ROC曲线分析证实了血清GDF15对乳腺癌具有一定诊断价值,与Zhao等[18]研究结果相符,提示GDF15参与乳腺癌的发生发展。
DCLK1是一种蛋白激酶,属于存在于细胞质中的微管相关蛋白双皮质素家族,由两个末端组成,具有微管相关功能,在各种癌症中过度表达[19]。研究表明,DCLK1的表达与神经发生和人类癌症有关,被用作肿瘤细胞标志物[20]。Gzil等[21]研究表明,乳腺癌细胞中的DCLK1具有癌干细胞样特性,随着其水平的增加相关通路被激活,促进了乳腺恶性肿瘤进展,表明DCLK1是乳腺癌的一个潜在早期诊断指标。本研究表明,乳腺癌组血清DCLK1水平显著升高,并且与临床病理特征相关。提示DCLK1参与乳腺癌的发生和发展。进一步多因素Logistic回归分析显示,血清DCLK1是乳腺癌的危险因素,且经ROC曲线分析证实,DCLK1对乳腺癌具有一定的诊断价值,联合AIF-1、DCLK1诊断的效能更佳。
综上所述,乳腺癌患者血清AIF-1、GDF15、DCLK1水平均升高,与临床病例特征相关,均是影响乳腺癌的危险因素,三者联合具有较高的诊断效能。但本研究尚有不足之处,上述内容提及AIF-1在人非小细胞肺癌组织中也异常表达,其诊断乳腺癌可能缺乏组织特异性,且本研究尚未分析AIF-1、GDF15、DCLK1在乳腺癌中的具体作用机制及预后价值,后续研究也将进一步明确AIF-1对乳腺癌的诊断价值,并对本研究结果加以验证。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:刘龙娇:研究设计与实施、数据统计、论文构思与撰写姚宇锋:研究设计指导、文章审阅及修改 -
图 5 孟德尔随机分析的散点图:总乳腺癌中的SULT1A1 (A)、IL-5 (B),ER+乳腺癌中的SULT1A1 (C)、CX3CL1 (D),ER−乳腺癌中的Beta-NGF (E)
Figure 5 Scatter plots of Mendelian randomization analyses for sulfotransferase 1A1 (A), interleukin-5 (B) in overall BC, sulfotransferase 1A1 (C), fractalkine (D) in ER+ BC, and beta-nerve growth factor (E) in ER− BC
-
[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708
[2] Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551. doi: 10.1038/s41590-023-01588-w
[3] Kehm RD, McDonald JA, Fenton SE, et al. Inflammatory Biomarkers and Breast Cancer Risk: A Systematic Review of the Evidence and Future Potential for Intervention Research[J]. Int J Environ Res Public Health, 2020, 17(15): 5445. doi: 10.3390/ijerph17155445
[4] Cai Y, Yousef A, Grandis JR, et al. NSAID therapy for PIK3CA-Altered colorectal, breast, and head and neck cancer[J]. Adv Biol Regul, 2020, 75: 100653. doi: 10.1016/j.jbior.2019.100653
[5] Danforth DN. The Role of Chronic Inflammation in the Development of Breast Cancer[J]. Cancers (Basel), 2021, 13(15): 3918. doi: 10.3390/cancers13153918
[6] Lou MWC, Drummond AE, Swain CTV, et al. Linking Physical Activity to Breast Cancer via Inflammation, Part 2: The Effect of Inflammation on Breast Cancer Risk[J]. Cancer Epidemiol Biomarkers Prev, 2023, 32(5): 597-605. doi: 10.1158/1055-9965.EPI-22-0929
[7] Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res, 2019, 4: 186. doi: 10.12688/wellcomeopenres.15555.1
[8] Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement[J]. JAMA, 2021, 326(16): 1614-1621. doi: 10.1001/jama.2021.18236
[9] Mercer KE, Apostolov EO, Gamboa da Costa G, et al. Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis[J]. Int J Mol Epidemiol Genet, 2010, 1(2): 92-103.
[10] Shi L, Shen W, Davis MI, et al. SULT1A1-dependent sulfonation of alkylators is a lineage-dependent vulnerability of liver cancers[J]. Nat Cancer, 2023, 4(3): 365-381. doi: 10.1038/s43018-023-00523-0
[11] Sak K, Everaus H. Sulfotransferase 1A1 as a Biomarker for Susceptibility to Carcinogenesis: From Molecular Genetics to the Role of Dietary Flavonoids[J]. Curr Drug Metab, 2016, 17(6): 528-541. doi: 10.2174/1389200217666160219113924
[12] Forat-Yazdi M, Jafari M, Kargar S, et al. Association between SULT1A1 Arg213His (rs9282861) Polymorphism and Risk of Breast Cancer: A Systematic Review and Meta-Analysis[J]. J Res Health Sci, 2017, 17(4): e00396.
[13] Krantz D, Mints M, Winerdal M, et al. IL-16 processing in sentinel node regulatory T cells is a factor in bladder cancer immunity[J]. Scand J Immunol, 2020, 92(6): e12926. doi: 10.1111/sji.12926
[14] Quail DF, Olson O, Bhardwaj P, et al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF[J]. Nat Cell Biol, 2017, 19(8): 974-987.
[15] Lee EJ, Lee SJ, Kim S, et al. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression[J]. Cell Signal, 2013, 25(10): 2025-2038. doi: 10.1016/j.cellsig.2013.06.004
[16] Liu G, Chen XT, Zhang H, et al. Expression analysis of cytokines IL-5, IL-6, IL-8, IL-17 and VEGF in breast cancer patients[J]. Front Oncol, 2022, 12: 1019247. doi: 10.3389/fonc.2022.1019247
[17] Korbecki J, Simińska D, Kojder K, et al. Fractalkine/CX3CL1 in Neoplastic Processes[J]. Int J Mol Sci, 2020, 21(10): 3723. doi: 10.3390/ijms21103723
[18] Geismann C, Erhart W, Grohmann F, et al. TRAIL/NF-κB/CX3CL1 Mediated Onco-Immuno Crosstalk Leading to TRAIL Resistance of Pancreatic Cancer Cell Lines[J]. Int J Mol Sci, 2018, 19(6): 1661. doi: 10.3390/ijms19061661
[19] Ren F, Zhao Q, Huang L, et al. The R132H mutation in IDH1 promotes the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis and is correlated with a better prognosis in gliomas[J]. Immunol Cell Biol, 2019, 97(5): 457-469. doi: 10.1111/imcb.12225
[20] Conroy MJ, Lysaght J. CX3CL1 Signaling in the Tumor Microenvironment[J]. Adv Exp Med Biol, 2020, 1231: 1-12.
[21] Liang Y, Yi L, Liu P, et al. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway[J]. J Cancer, 2018, 9(19): 3603-3612. doi: 10.7150/jca.26497
[22] Dreyer TF, Kuhn S, Stange C, et al. The Chemokine CX3CL1 Improves Trastuzumab Efficacy in HER2 Low-Expressing Cancer In Vitro and In Vivo[J]. Cancer Immunol Res, 2021, 9(7): 779-789. doi: 10.1158/2326-6066.CIR-20-0327
[23] Tiberi A, Carucci NM, Testa G, et al. Reduced levels of NGF shift astrocytes toward a neurotoxic phenotype[J]. Front Cell Dev Biol, 2023, 11: 1165125. doi: 10.3389/fcell.2023.1165125
[24] Davidson B, Reich R, Lazarovici P, et al. Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma[J]. Breast Cancer Res Treat, 2004, 83(2): 119-128. doi: 10.1023/B:BREA.0000010704.17479.8a
[25] Noh SJ, Bae JS, Jamiyandorj U, et al. Expression of nerve growth factor and heme oxygenase-1 predict poor survival of breast carcinoma patients[J]. BMC Cancer, 2013, 13: 516. doi: 10.1186/1471-2407-13-516
[26] Jung HH, Kim JY, Cho EY, et al. Elevated Level of Nerve Growth Factor (NGF) in Serum-Derived Exosomes Predicts Poor Survival in Patients with Breast Cancer Undergoing Neoadjuvant Chemotherapy[J]. Cancers (Basel), 2021, 13(21): 5260. doi: 10.3390/cancers13215260
[27] Bruno F, Arcuri D, Vozzo F, et al. Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review[J]. Curr Oncol, 2022, 29(11): 8103-8120. doi: 10.3390/curroncol29110640
-
期刊类型引用(1)
1. 陈园丽,祖璎玲. 同胞全相合与单倍体相合外周血造血干细胞移植对急性髓系白血病患者的疗效比较. 实用癌症杂志. 2025(06): 1023-1025+1029 . 百度学术
其他类型引用(1)