Application of Circulating Tumor DNA in Precision Diagnosis and Treatment of Colorectal Cancer
-
摘要:
结直肠癌(colorectal cancer, CRC)是世界上最常见的恶性肿瘤之一,其发病率和死亡率居高不下,严重危害着人们的身体健康。传统的诊断模式已不能满足现如今人们对于肿瘤进行实时监测的需求。对比传统的检测手段,ctDNA检测不仅无创,而且能够实时检测肿瘤全面的基因组信息。随着检测技术的进步,逐渐凸显出其在CRC临床治疗中的潜在价值。本文就ctDNA在CRC患者中早期筛查、微小残留病变检测、指导个体化治疗的临床应用进展进行综述。
Abstract:Colorectal cancer (CRC) is one of the most common malignant tumors recorded worldwide. This condition has high morbidity and mortality and seriously endangers people's health. Traditional diagnostic models fail to meet people's current needs for real-time monitoring of tumors. Compared with traditional detection methods, ctDNA detection is not only noninvasive but can also attain real-time detection of comprehensive genomic information of tumors. The advancement of detection technology has gradually highlighted the potential of ctDNA detection in the clinical treatment of CRC. This article reviews the advancements on the clinical application of ctDNA in early screening, minimal residual disease detection, and guidance on individualized treatment of CRC patients.
-
0 引言
结直肠癌(colorectal cancer, CRC)是世界上发病率最高的恶性肿瘤之一,发病率与死亡率分别位居第三位和第二位[1],严重危害了人们的身体健康。CRC的预后在精准诊疗模式下得到了明显改善[2-3],传统的筛查、诊断以及预测治疗反应和预后的工具已经不能满足临床实践对精准诊疗的需求。近些年的研究中循环肿瘤DNA(circulating tumor DNA, ctDNA)可能是符合CRC精准诊疗全程管理中最有前途的工具。
ctDNA是由肿瘤组织释放到血液当中的DNA片段,基因组图谱与其来源的肿瘤DNA相对应[4-5],可以识别包括点突变、基因重排、基因扩增以及基因拷贝数变化等分子特征,用于获取肿瘤的基因组改变信息[6],此外,ctDNA较短[7]的半衰期使得其可用于疾病的实时监测[8-9]。目前ctDNA检测主要应用于肿瘤的早期筛查、微小残留病变(minimal residual disease, MRD)检测、肿瘤复发监测、个体化治疗指导等[10-13]。本文就ctDNA近年来在CRC的临床应用进展进行阐述。
1 ctDNA检测技术
ctDNA检测技术基于它们检测原理涉及的是PCR还是NGS分为两类。基于PCR的检测方式依赖于使用与突变序列互补的引物来检测特定的已知突变[14],主要技术手段包括数字PCR(digital PCR, DPCR)、微滴式数字PCR(droplet digital PCR, DDPCR)、扩增受阻突变系统PCR(allele-specific amplification refractory mutation system PCR, ARMS-PCR)、等位基因特异性PCR (allele-specific PCR, AS-PCR)和磁珠乳液扩增技术(beads, emulsion, amplification, magnetics, BEAMing)[15-17]。基于NGS的检测方式理论上可以对整个基因组同时进行测序并提供更大的覆盖范围,主要的技术包括标记扩增深度测序技术(tagged-amplicon deep sequencing, TAm-Seq)、安全测序系统(safe-sequencing system, Safe-SeqS)和癌症个体化深度测序分析(personalized profiling by deep sequencing, CAPP-Seq)[18-20]。
2 ctDNA在结直肠癌早期筛查中的应用
CRC的预后和诊断与肿瘤的分期密切相关,早诊早治在临床实践中变得尤为重要,因此近年来大量的研究开始聚焦于CRC的早期筛查。CRC传统的筛查方式是使用非侵入性的粪便隐血试验,因特异性、敏感度较低[21-22],科学家们开始挖掘ctDNA在CRC筛查中的潜能。血浆ctDNA异常的甲基化是研究者们关注的重点,因为它始于CRC早期,参与发展的全程[23-24]。研究已表明单个基因异常的甲基化在CRC早期筛查中展现出了不错的诊断效能,但敏感度并不稳定;鉴于CRC发生发展过程中受到多种基因的调控,更多的研究开始转向多基因联合检测,多基因联合检测可在特异性不受明显影响的前提下保持相对稳定的诊断敏感度。但患者血液中的ctDNA浓度在早期阶段较低或不存在,使得其在筛查目的下的检测具有一定的难度,美国临床肿瘤学学会指出ctDNA检测在癌症筛查中仍缺乏充分的有效性证据[25],但与传统筛查方法结合,可以提高早期CRC的诊断水平。
2.1 单基因检测
SEPT9是首个且唯一被FDA批准的基于单基因甲基化的生物标志物,在健康组织中甲基化SEPT9(mSEPT9)水平低,而在CRC等病变组织中显著升高,因此可通过检测血浆中mSEPT9的水平识别结直肠癌患者[26]。一项研究采用Epi ProColon® 2.0方法前瞻性地评估了循环甲基化SEPT9 DNA在筛查人群中检测CRC的准确性,SEPT9检测到的Ⅰ至Ⅳ期CRC的敏感度分别为35.0%、63.0%、46.0%和77.4%,特异性为91.5%,但对于晚期腺瘤的敏感度仅为11.2%[27]。此外,多配体聚糖2(syndecan 2, SDC2)、分泌卷曲相关蛋白2(secreted frizzled related protein 2, SFRP2)等基因的异常甲基化也可用于CRC的筛查,但其检测腺瘤的效能均较低[28-29]。
2.2 多基因联合检测
多基因联合检测因其稳定的诊断敏感度成为研究热点,一项研究筛选出C9orf50、KCNQ5和CLIP4三个CRC高度特异的甲基化标志物用于验证基于ctDNA甲基化在临床早期筛查中的作用,发现每种标记均可区分CRC患者和健康个体,当三者联合检测时敏感度和特异性分别能够达到85%和99%[30]。另一项研究评估SFRP1、SFRP2、SDC2和PRIMA1基因的联合检测效能,发现该组组合在诊断CRC时敏感度和特异性分别为91.5%和97.3%;在检测腺瘤时敏感度为89.2%,特异性为86.5%;在检测腺癌及腺瘤中均表现出不错的诊断效能,且特异性并没有因为基因靶点的增多而大幅下降,在一定程度上打消了研究者对多基因联合检测特异性的顾虑[31]。
3 ctDNA在结直肠癌MRD检测中的应用
MRD是在术后持续存在的隐匿性疾病,伴有此种隐匿性状态的患者均会复发[32],此阶段进行临床干预可以改善患者的预后。目前医学成像无法检测到这种隐匿状态,指南虽没有指定有效的检测手段,但研究表明ctDNA具有识别MRD的能力,目前采用ctDNA检测MRD的方法主要包括肿瘤非特异性实验和肿瘤相关性实验,两者最根本的区别是前者仅通过血浆分析,后者依赖于肿瘤组织,通过初步基因组分析患者的肿瘤组织,以确定可在血浆中监测的患者特异性体细胞突变[33]。不同ctDNA检测方法也存在很大的差异,不同的ctDNA检测方法的临床效用应通过临床试验进行独立验证。
3.1 MRD用于复发监测
术后ctDNA的存在与复发风险高度相关[34-35]。一项纳入103例Ⅰ~Ⅳ期接受根治性手术的CRC患者的研究中,发现术后一月ctDNA阳性的患者全部复发,随访时间内ctDNA阴性的患者中24.5%患者出现复发[36]。GALAXY研究是目前最大型的早期MRD检测临床研究之一,分析了Ⅱ~Ⅳ期可切除CRC患者的术前和术后共计1 039例ctDNA样本,发现术后4周ctDNA阳性患者与较高的复发风险相关[37]。此外一项多中心、前瞻性纵向队列研究入组了350例Ⅰ~Ⅳ期CRC用于评估MRD与复发的关系,发现术后一个月ctDNA阳性患者复发的可能性是ctDNA阴性患者的17.5倍[38]。
3.2 MRD用于筛选辅助治疗获益人群
外科手术切除是早期CRC主要的治疗手段,术后辅助化疗可以降低高风险临床特征患者的复发风险。辅助化疗目前主要针对于高危Ⅲ期CRC患者,对Ⅱ期CRC是否有益存在争议,但目前无法对辅助治疗的疗效准确评估,也无法利用当前的检测手段筛选出辅助化疗真正获益人群,研究指出治疗期间ctDNA可能会被清除,这与复发风险降低高度相关,表明动态的ctDNA分析有望作为实时反映辅助治疗获益情况的生物标志物[37]。
DYNAMIC研究评估了ctDNA在Ⅱ期CRC患者中指导辅助治疗的能力,并比较了ctDNA较标准临床病理特征指导辅助治疗的优势,发现ctDNA指导组接受辅助化疗的患者比例低于标准管理组,但两年无复发生存率(relapse-free survival, RFS)不劣于标准管理组,分别为93.5%和92.4%,接受辅助化疗的ctDNA阳性患者的三年RFS为86.4%,未接受辅助化疗的ctDNA阴性患者的三年RFS为92.5%,证明通过ctDNA指导的Ⅱ期肠癌不仅能避免过度治疗,还不影响生存结果[39]。ctDNA的清除率也可以反映辅助治疗的效果,Henriksen等[40]采用ctDNA检测对160例Ⅲ期CRC患者进行了术后辅助化疗获益情况的研究,发现辅助治疗期间ctDNA持久清除的患者在36个月的随访中没有复发,临时清除或无清除的患者均出现复发。GALAXY研究[37]分析了Ⅰ~Ⅲ期和寡转移性Ⅳ期CRC患者的MRD与辅助化疗效果的ctDNA动态关联,在182例MRD阳性的患者中92例接受辅助化疗,24周时ctDNA清除率在接受辅助化疗的患者中达到了68.48%,较未接受辅助化疗亚组24周时ctDNA清除率12.2%显著提高。
4 ctDNA在转移性结直肠癌中的应用
ctDNA在转移性结直肠癌(metastatic colorectal cancer, mCRC)的临床实践中具有巨大的潜力[12]。mCRC目前主要以全身化疗、免疫治疗以及靶向治疗为主[2],靶向和免疫治疗均需明确患者的分子病理分型,实时监测患者体内肿瘤的克隆变化。传统的病理组织活检因其创伤大、取材困难等原因不能作为常规的监测手段来满足临床实践的需求,并且单一部位的组织往往不能反映整个肿瘤的异质性[4, 41-42]。因此,血浆ctDNA作为一种安全实时、能够反映癌症演变全面动态信息的检测手段,可以作为补充或替代组织活检,满足临床精准治疗的需求。
4.1 预测预后
随着检测技术的进步,ctDNA作为预测CRC预后的标志物逐渐成为可能。在多个公共数据库中对比CRC通过组织病理检测与血浆ctDNA检测的结果,发现最常见发生突变的基因为APC、TP53、KRAS、PIK3CA和BRAF等[42],两种检测的结果具有高度的一致性,并且血浆ctDNA中检测出KRAS基因、BRAF-V600E基因突变预示着这些患者预后也较差[43-46]。一项研究对171例接受一线治疗的不可切除mCRC患者进行了前瞻性队列研究,来自63例患者的成对基线组织和血浆样本的RAS/BRAF改变显示出了良好的一致性(81%)。经过一线治疗,血浆RAS/BRAF清除的患者与RAS/BRAF野生型患者表现出相似的PFS和OS,而且优于RAS/BRAF突变型患者。获得新的RAS/BRAF突变患者与维持RAS/BRAF突变患者预后相似,而且PFS和OS比维持RAS/BRAF野生型患者短[47]。一项Meta分析也指出ctDNA阳性与CRC患者的RFS和OS差存在很强的相关性,与分期、研究规模、检测方法和样本类型无关[48]。
4.2 疗效评估及提示耐药
连续血浆ctDNA检测可以前瞻性地识别耐药突变,对肿瘤患者的精准治疗具有一定的价值。2012年两项具有里程碑意义的研究从基础和临床两个层面揭示了KRAS的出现是抗EGFR耐药的机制[45, 49]。自此基于血浆液体活检研究CRC继发性耐药的机制研究层出不穷,目前CRC中抗EGFR耐药的机制包括RAS、BRAF-V600E、MAP2K1、PIK3CA突变、EGFR胞外域突变、HER2-扩增等[50-55]。一项对22例mCRC患者的动态ctDNA分析研究了其在提示耐药及疗效评估中的作用,显示ctDNA中基因的克隆进化会随着治疗过程改变,在患者达到缓解或者疾病稳定状态时,耐药克隆突变如RAS、APC、TP53、HER2等基因的突变或变异丰度会明显下降,甚至出现关键驱动基因的清除,但随着治疗的进展耐药克隆重新出现,甚至达到更高的变异频率,此外ctDNA可以早于传统影像学检查及CEA、CA199提前至少4个月提示患者耐药[56]。ctDNA也可以检测错配修复蛋白表达情况、微卫星稳定状态以及肿瘤突变负荷等,并且ctDNA检测的结果可以早于影像学观察到免疫治疗对于肿瘤的效果[57]。在一项微卫星稳定的CRC患者中使用免疫治疗的研究中,血浆ctDNA的下降与影像学显示疾病的稳定相关,而治疗4周后ctDNA的上升预示着肿瘤的进展[58]。
4.3 指导个体化治疗
ctDNA在指导mCRC个体化治疗方面凸显出了巨大的潜力[5, 59]。TRIUMPH研究利用血浆ctDNA检测结果用于临床入组标准来指导CRC的靶向治疗,并对比了经组织病理筛选入组的患者,发现无论是通过ctDNA基因分型还是传统的组织基因分型确认HER2阳性的mCRC患者,治疗都表现出相似的疗效,即ctDNA基因分型的准确性与组织基因分型相似[60]。自此通过血浆ctDNA识别主要耐药决定因素来指导个体化治疗的研究层出不穷。抗EGFR抗体联合化疗是RAS和BRAF野生型mCRC一线治疗选择,但是mCRC患者的后线治疗仍然是个难题,对于二线治疗失败的mCRC,有效的治疗选择非常有限。一项研究采用血浆ctDNA检测前瞻性地评估了西妥昔单抗联合伊立替康对于上述患者三线治疗的效果,在这项Ⅱ期单臂临床试验中,21%的RAS和BRAF野生型mCRC在再次使用西妥昔单抗联合伊立替康治疗时产生了积极的结果,而且只有RAS和BRAF野生型ctDNA患者会获益[61]。此外,借助ctDNA检测,探索如何准确寻找药物再挑战的时机也是当前临床试验应该关注的问题。目前也有临床研究直接采用ctDNA检测结果作为临床研究入组标准,并利用ctDNA基因分型指导mCRC患者的二线方案,探究经ctDNA决策下的个体化治疗效果(NCT04831528),但该研究结果尚未公布。
5 总结与展望
血浆ctDNA检测有望成为一种临床上实施个性化医疗的关键工具,有可能改变早期和晚期CRC的治疗模式。虽然在CRC的诊断与治疗中尚未有明确的应用批准,但ctDNA检测作为实时的检测方式,在大量研究中已证实其在CRC的早期筛查与诊断、复发风险监测、指导个体化治疗、评估治疗效果、提示耐药以及预测预后方面的临床价值,其成为临床实践的关键部分只是时间问题。此外,ctDNA检测技术的进步也会为其在结直肠癌的诊断与治疗方面提供助力,进一步推动精准治疗的进展,为患者选择最合适的诊疗方案,ctDNA引领下的精准诊疗模式将为肿瘤领域带来崭新的格局。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:杨文涛:文章撰写和修改李溟涵、蔡继东、李聪、宋望:文章的编辑和修改徐烨:文章主题设定,内容修改 -
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] Zhang Y, Chen Z, Li J. The current status of treatment for colorectal cancer in China: A systematic review[J]. Medicine (Baltimore), 2017, 96(40): e8242. doi: 10.1097/MD.0000000000008242
[3] Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer[J]. Nat Rev Clin Oncol, 2017, 14(4): 235-246. doi: 10.1038/nrclinonc.2016.171
[4] Nassar FJ, Msheik ZS, Nasr RR, et al. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction[J]. Clin Epigenetics, 2021, 13(1): 111. doi: 10.1186/s13148-021-01095-5
[5] Cheng ML, Pectasides E, Hanna GJ, et al. Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions[J]. CA Cancer J Clin, 2021, 71(2): 176-190. doi: 10.3322/caac.21650
[6] Bardelli A, Pantel K. Liquid Biopsies, What We Do Not Know (Yet)[J]. Cancer Cell, 2017, 31(2): 172-179. doi: 10.1016/j.ccell.2017.01.002
[7] Diehl F, Li M, He Y, et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions[J]. Nat Methods, 2006, 3(7): 551-559. doi: 10.1038/nmeth898
[8] Caldas C, Hahn SA, Hruban RH, et al. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia[J]. Cancer Res, 1994, 54(13): 3568-3573.
[9] Esteller M, Sanchez-Cespedes M, Rosell R, et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients[J]. Cancer Res, 1999, 59(1): 67-70.
[10] Dasari A, Morris VK, Allegra CJ, et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper[J]. Nat Rev Clin Oncol, 2020, 17(12): 757-770. doi: 10.1038/s41571-020-0392-0
[11] Garlan F, Laurent-Puig P, Sefrioui D, et al. Early Evaluation of Circulating Tumor DNA as Marker of Therapeutic Efficacy in Metastatic Colorectal Cancer Patients (PLACOL Study)[J]. Clin Cancer Res, 2017, 23(18): 5416-5425. doi: 10.1158/1078-0432.CCR-16-3155
[12] Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312. doi: 10.1038/s41571-020-00457-x
[13] Marcuello M, Vymetalkova V, Neves RPL, et al. Circulating biomarkers for early detection and clinical management of colorectal cancer[J]. Mol Aspects Med, 2019, 69: 107-122. doi: 10.1016/j.mam.2019.06.002
[14] Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment[J]. N Engl J Med, 2018, 379(18): 1754-1765. doi: 10.1056/NEJMra1706174
[15] Zhang BO, Xu CW, Shao Y, et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation[J]. Exp Ther Med, 2015, 9(4): 1383-1388. doi: 10.3892/etm.2015.2221
[16] Markou A, Tzanikou E, Ladas I, et al. Nuclease-Assisted Minor Allele Enrichment Using Overlapping Probes-Assisted Amplification-Refractory Mutation System: An Approach for the Improvement of Amplification-Refractory Mutation System-Polymerase Chain Reaction Specificity in Liquid Biopsies[J]. Anal Chem, 2019, 91(20): 13105-13111. doi: 10.1021/acs.analchem.9b03325
[17] Lang AH, Drexel H, Geller-Rhomberg S, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF[J]. J Mol Diagn, 2011, 13(1): 23-28. doi: 10.1016/j.jmoldx.2010.11.007
[18] Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing[J]. Proc Natl Acad Sci U S A, 2011, 108(23): 9530-9535. doi: 10.1073/pnas.1105422108
[19] Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA[J]. Sci Transl Med, 2012, 4(136): 136ra68.
[20] Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage[J]. Nat Med, 2014, 20(5): 548-554. doi: 10.1038/nm.3519
[21] Vatandoost N, Ghanbari J, Mojaver M, et al. Early detection of colorectal cancer: from conventional methods to novel biomarkers[J]. J Cancer Res Clin Oncol, 2016, 142(2): 341-351. doi: 10.1007/s00432-015-1928-z
[22] Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality[J]. Gut, 2017, 66(4): 683-691. doi: 10.1136/gutjnl-2015-310912
[23] Locke WJ, Guanzon D, Ma C, et al. DNA Methylation Cancer Biomarkers: Translation to the Clinic[J]. Front Genet, 2019, 10: 1150. doi: 10.3389/fgene.2019.01150
[24] Guo M, Peng Y, Gao A, et al. Epigenetic heterogeneity in cancer[J]. Biomarker Res, 2019, 7: 23. doi: 10.1186/s40364-019-0174-y
[25] Merker JD, Oxnard GR, Compton C, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review[J]. J Clin Oncol, 2018, 36(16): 1631-1641. doi: 10.1200/JCO.2017.76.8671
[26] Devos T, Tetzner R, Model F, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer[J]. Clin Chem, 2009, 55(7): 1337-1346. doi: 10.1373/clinchem.2008.115808
[27] Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer[J]. Gut, 2014, 63(2): 317-325. doi: 10.1136/gutjnl-2012-304149
[28] Ma L, Qin G, Gai F, et al. A novel method for early detection of colorectal cancer based on detection of methylation of two fragments of syndecan-2 (SDC2) in stool DNA[J]. BMC Gastroenterol, 2022, 22(1): 191. doi: 10.1186/s12876-022-02264-3
[29] Gachabayov M, Lebovics E, Rojas A, et al. Performance evaluation of stool DNA methylation tests in colorectal cancer screening: a systematic review and meta-analysis[J]. Colorectal Dis, 2021, 23(5): 1030-1042. doi: 10.1111/codi.15521
[30] Jensen SO, Ogaard N, Orntoft MW, et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study[J]. Clin Epigenetics, 2019, 11(1): 158. doi: 10.1186/s13148-019-0757-3
[31] Bartak BK, Kalmar A, Peterfia B, et al. Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples[J]. Epigenetics, 2017, 12(9): 751-763. doi: 10.1080/15592294.2017.1356957
[32] Pantel K, Alix-Panabieres C. Liquid biopsy and minimal residual disease - latest advances and implications for cure[J]. Nat Rev Clin Oncol, 2019, 16(7): 409-424. doi: 10.1038/s41571-019-0187-3
[33] Loft M, To YH, Gibbs P, et al. Clinical application of circulating tumour DNA in colorectal cancer[J]. Lancet Gastroenterol Hepatol, 2023, 8(9): 837-852. doi: 10.1016/S2468-1253(23)00146-2
[34] Taieb J, Taly V, Henriques J, et al. Prognostic Value and Relation with Adjuvant Treatment Duration of ctDNA in Stage Ⅲ Colon Cancer: a Post Hoc Analysis of the PRODIGE-GERCOR IDEA-France Trial[J]. Clin Cancer Res, 2021, 27(20): 5638-5646. doi: 10.1158/1078-0432.CCR-21-0271
[35] Larribère L, Martens UM. Advantages and Challenges of Using ctDNA NGS to Assess the Presence of Minimal Residual Disease (MRD) in Solid Tumors[J]. Cancers (Basel), 2021, 13(22): 5698. doi: 10.3390/cancers13225698
[36] Parikh AR, Van Seventer EE, Siravegna G, et al. Minimal Residual Disease Detection using a Plasma-only Circulating Tumor DNA Assay in Patients with Colorectal Cancer[J]. Clin Cancer Res, 2021, 27(20): 5586-5594. doi: 10.1158/1078-0432.CCR-21-0410
[37] Kotani D, Oki E, Nakamura Y, et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer[J]. Nat Med, 2023, 29(1): 127-134. doi: 10.1038/s41591-022-02115-4
[38] Mo S, Ye L, Wang D, et al. Early Detection of Molecular Residual Disease and Risk Stratification for Stage Ⅰ to Ⅲ Colorectal Cancer via Circulating Tumor DNA Methylation[J]. JAMA Oncol, 2023, 9(6): 770-778. doi: 10.1001/jamaoncol.2023.0425
[39] Tie J, Cohen JD, Lahouel K, et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage Ⅱ Colon Cancer[J]. N Engl J Med, 2022, 386(24): 2261-2272. doi: 10.1056/NEJMoa2200075
[40] Henriksen TV, Tarazona N, Frydendahl A, et al. Circulating Tumor DNA in Stage Ⅲ Colorectal Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant Therapy Efficacy and Clinical Behavior of Recurrences[J]. Clin Cancer Res, 2022, 28(3): 507-517. doi: 10.1158/1078-0432.CCR-21-2404
[41] Jiang M, Jin S, Han J, et al. Detection and clinical significance of circulating tumor cells in colorectal cancer[J]. Biomarker Res, 2021, 9(1): 85. doi: 10.1186/s40364-021-00326-4
[42] Strickler JH, Loree JM, Ahronian LG, et al. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer[J]. Cancer Discov, 2018, 8(2): 164-173. doi: 10.1158/2159-8290.CD-17-1009
[43] French AJ, Sargent DJ, Burgart LJ, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer[J]. Clin Cancer Res, 2008, 14(11): 3408-3415. doi: 10.1158/1078-0432.CCR-07-1489
[44] Vidal J, Muinelo L, Dalmases A, et al. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients[J]. Ann Oncol, 2017, 28(6): 1325-1332. doi: 10.1093/annonc/mdx125
[45] Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer[J]. Nature, 2012, 486(7404): 532-536. doi: 10.1038/nature11156
[46] Berger AW, Schwerdel D, Welz H, et al. Treatment monitoring in metastatic colorectal cancer patients by quantification and KRAS genotyping of circulating cell-free DNA[J]. PLoS One, 2017, 12(3): e0174308. doi: 10.1371/journal.pone.0174308
[47] Wang F, Huang YS, Wu HX, et al. Genomic temporal heterogeneity of circulating tumour DNA in unresectable metastatic colorectal cancer under first-line treatment[J]. Gut, 2022, 71(7): 1340-1349. doi: 10.1136/gutjnl-2021-324852
[48] Basnet S, Zhang ZY, Liao WQ, et al. The Prognostic Value of Circulating Cell-Free DNA in Colorectal Cancer: A Meta-Analysis[J]. J Cancer, 2016, 7(9): 1105-1113. doi: 10.7150/jca.14801
[49] Diaz Jr LA, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J]. Nature, 2012, 486(7404): 537-540. doi: 10.1038/nature11219
[50] Parseghian CM, Loree JM, Morris VK, et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge[J]. Ann Oncol, 2019, 30(2): 243-249. doi: 10.1093/annonc/mdy509
[51] Van Emburgh BO, Arena S, Siravegna G, et al. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer[J]. Nat Commun, 2016, 7: 13665. doi: 10.1038/ncomms13665
[52] Siravegna G, Lazzari L, Crisafulli G, et al. Radiologic and Genomic Evolution of Individual Metastases during HER2 Blockade in Colorectal Cancer[J]. Cancer Cell, 2018, 34(1): 148-162, e7. doi: 10.1016/j.ccell.2018.06.004
[53] Spindler KG. Methodological, biological and clinical aspects of circulating free DNA in metastatic colorectal cancer[J]. Acta Oncol, 2017, 56(1): 7-16. doi: 10.1080/0284186X.2016.1253861
[54] Tabernero J, Lenz HJ, Siena S, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial[J]. Lancet Oncol, 2015, 16(8): 937-948. doi: 10.1016/S1470-2045(15)00138-2
[55] Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer[J]. Cancer Discov, 2013, 3(6): 658-673. doi: 10.1158/2159-8290.CD-12-0558
[56] Yang W, Zou J, Li Y, et al. Longitudinal Circulating Tumor DNA Profiling in Metastatic Colorectal Cancer During Anti-EGFR Therapy[J]. Front Oncol, 2022, 12: 830816. doi: 10.3389/fonc.2022.830816
[57] Kasi PM, Budde G, Krainock M, et al. Circulating tumor DNA (ctDNA) serial analysis during progression on PD-1 blockade and later CTLA-4 rescue in patients with mismatch repair deficient metastatic colorectal cancer[J]. J Immunother Cancer, 2022, 10(1): e003312. doi: 10.1136/jitc-2021-003312
[58] Wang C, Chevalier D, Saluja J, et al. Regorafenib and Nivolumab or Pembrolizumab Combination and Circulating Tumor DNA Response Assessment in Refractory Microsatellite Stable Colorectal Cancer[J]. Oncologist, 2020, 25(8): e1188-e1194. doi: 10.1634/theoncologist.2020-0161
[59] Masfarré L, Vidal J, Fernández-Rodríguez C, et al. ctDNA to Guide Adjuvant Therapy in Localized Colorectal Cancer (CRC)[J]. Cancers (Basel), 2021, 13(12): 2869. doi: 10.3390/cancers13122869
[60] Nakamura Y, Okamoto W, Kato T, et al. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: a phase 2 trial[J]. Nat Med, 2021, 27(11): 1899-1903. doi: 10.1038/s41591-021-01553-w
[61] Cremolini C, Rossini D, Dell'aquila E, et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial[J]. JAMA Oncol, 2019, 5(3): 343-350. doi: 10.1001/jamaoncol.2018.5080
-
期刊类型引用(1)
1. 施耀杰. 腹腔镜与传统开腹结直肠癌根治术的近期疗效分析. 河南外科学杂志. 2025(03): 108-110 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 3236
- HTML全文浏览量: 2796
- PDF下载量: 646
- 被引次数: 2