-
摘要:目的
探讨阿克曼菌(AKK)对氧化偶氮甲烷(AOM)/葡聚糖硫酸钠(DSS)诱导的炎症相关性结直肠癌小鼠模型及其肠道干细胞的影响。
方法AOM/DSS诱导小鼠炎症相关性结直肠癌模型随机分为三组,通过灌胃方式给予三组不同的药物分别为模型组(Model)、AKK组及阿司匹林组(Aspirin)。干预10周后观察小鼠的肿瘤数目、肿瘤大小、肿瘤分布及分析肿瘤负荷情况。免疫组织化学分析表征肿瘤恶性化的蛋白Ki67和表征干细胞的特异性蛋白Lgr5的表达变化。qRT-PCR检测干细胞分化特性的基因Lgr5、CD133、Nanog和ALDH1的mRNA表达。
结果与模型组相比,AKK组的肿瘤数目、肿瘤大小及肿瘤负荷明显减小(P < 0.01);相较于模型组小鼠,AKK组的肿瘤组织中Ki67和Lgr5表达明显下降(P < 0.05);CD133、Nanog和ALDH1的mRNA表达明显下调。
结论AKK对AOM/DSS诱导的结肠炎相关性结直肠癌小鼠具有防治作用,其作用机制可能与结直肠干细胞活性密切相关。
Abstract:ObjectiveTo investigate the effects of Akkermansia muciniphila (AKK) on azomethane-oxide (AOM)/glucan sodium sulfate (DSS)-induced inflammatory colorectal cancer mouse model and intestinal stem cells.
MethodsAOM/DSS-induced mouse models of inflammatory-associated colorectal cancer were randomly divided into three groups, namely, model, AKK and aspirin groups, based on different administration of drugs by gavage. The tumor number, size, distribution, and burden were observed 10 weeks after intervention. Immunohistochemical method was used to analyze the expressions of Ki67 and Lgr5 proteins, which are utilized to characterize tumor malignancy and stem cells. The mRNA expressions of Lgr5, CD133, Nanog, and ALDH1 were detected by qRT-PCR.
ResultsCompared with those of the model group, the tumor number, size, and burden of the AKK group were significantly reduced (P < 0.01). The expressions of Ki67 and Lgr5 in the AKK group of tumor tissues were significantly decreased (P < 0.05), and the mRNA expressions of CD133, Nanog and ALDH1 were significantly down-regulated.
ConclusionAKK is effective against AOM/DSS-induced colitis-associated colorectal cancer in mice, and its mechanism of action may be closely related to colorectal stem cell activity.
-
Key words:
- Colorectal cancer /
- Akkermansia /
- Intestinal flora /
- Intestinal stem cell
-
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:张璐:课题设计、文章撰写刘铄川、王琦珂:实验实施姬高:数据统计武艺铭、杨利梅:实验实施隋华:实验指导刘怀民:实验设计与指导
-
表 1 实验结束时各组AOM/DSS小鼠DAI评分
Table 1 DAI score in AOM/DSS mice at the end of experiment
-
[1] Sui H, Zhao J, Zhou L, et al. Tanshinone ⅡA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer[J]. Cancer Lett, 2017, 403: 86-97. doi: 10.1016/j.canlet.2017.05.013
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
[3] 张玉丽, 范锐, 隋华. 肠道微生态调控下的Th17/Treg细胞失衡及其在结直肠癌中的作用[J]. 现代肿瘤医学, 2022, 30(9): 1684-1689. doi: 10.3969/j.issn.1672-4992.2022.09.033 Zhang YL, Fan R, Sui H. The imbalance of Th17/Treg under the regulation of intestinal microecology and its role in colorectal cancer[J]. Xian Dai Zhong Liu Yi Xue, 2022, 30(9): 1684-1689. doi: 10.3969/j.issn.1672-4992.2022.09.033
[4] Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 690-704. doi: 10.1038/s41575-019-0209-8
[5] Zhang YL, Huo L, Wei ZZ, et al. Hotspots and frontiers in inflammatory tumor microenvironment research: A scientometric and visualization analysis[J]. Front Pharmacol, 2022, 13: 862585. doi: 10.3389/fphar.2022.862585
[6] Sui H, Zhang L, Gu KJ, et al. YYFZBJS ameliorates colorectal cancer progression in ApcMin/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation[J]. Cell Commun Signal, 2020, 18(1): 113. doi: 10.1186/s12964-020-00596-9
[7] Wang L, Tang L, Feng Y, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997. doi: 10.1136/gutjnl-2019-320105
[8] Sui H, Tan H, Fu J, et al. The active fraction of Garcinia yunnanensis suppresses the progression of colorectal carcinoma by interfering with tumorassociated macrophage-associated M2 macrophage polarization in vivo and in vitro[J]. FASEB J, 2020, 34(6): 7387-7403. doi: 10.1096/fj.201903011R
[9] Shi ZJ, Lei HH, Chen G, et al. Impaired Intestinal Akkermansia muciniphila and Aryl Hydrocarbon Receptor Ligands Contribute to Nonalcoholic Fatty Liver Disease in Mice[J]. mSystems, 2021, 6(1): e00985-20.
[10] 王艺洁, 张港玮, 徐超, 等. 免疫检查点抑制剂治疗结直肠癌的疗效及肠道菌群对其疗效影响的研究进展[J]. 肿瘤防治研究, 2022, 49(11): 1184-1189. doi: 10.3971/j.issn.1000-8578.2022.22.0429 Wang YJ, Zhang GW, Xu C, et al. Research Progress on Effects of Gut Microbiome on Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(11): 1184-1189. doi: 10.3971/j.issn.1000-8578.2022.22.0429
[11] Sugihara K, Kitamoto S, Saraithong P, et al. Mucolytic bacteria license pathobionts to acquire host-derived nutrients during dietary nutrient restriction[J]. Cell Rep, 2022, 40(3): 111093. doi: 10.1016/j.celrep.2022.111093
[12] Tan G, Huang C, Chen J, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol, 2020, 13(1): 149. doi: 10.1186/s13045-020-00985-0
[13] Zhang Y, Chai N, Wei Z, et al. YYFZBJS inhibits colorectal tumorigenesis by enhancing Tregs-induced immunosuppression through HIF-1α mediated hypoxia in vivo and in vitro[J]. Phytomedicine, 2022, 98: 153917. doi: 10.1016/j.phymed.2021.153917
[14] Wang F, Cai K, Xiao Q, et al. Akkermansia muciniphila administration exacerbated the development of colitis-associated colorectal cancer in mice[J]. J Cancer, 2022, 13(1): 124-133. doi: 10.7150/jca.63578
[15] Osman MA, Neoh HM, Ab Mutalib NS, et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer[J]. Sci Rep, 2021, 11(1): 2925. doi: 10.1038/s41598-021-82465-0
[16] Leung C, Tan SH, Barker N. Recent Advances in Lgr5+ Stem Cell Research[J]. Trends Cell Biol, 2018, 28(5): 380-391. doi: 10.1016/j.tcb.2018.01.010
[17] Zhu P, Lu T, Wu J, et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons[J]. Cell Res, 2022, 32(6): 555-569. doi: 10.1038/s41422-022-00645-7
[18] Wang L, Wang L, Yu Y, et al. Aldehyde Dehydrogenase 1 in Gastric Cancer[J]. J Oncol, 2022, 2022: 5734549.
[19] Robinson M, Gilbert SF, Waters JA, et al. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells[J]. Cancers (Basel), 2021, 13(2): 262. doi: 10.3390/cancers13020262
[20] Vora P, Venugopal C, Salim SK, et al. The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma[J]. Cell Stem Cell, 2020, 26(6): 832-844. e6. doi: 10.1016/j.stem.2020.04.008
[21] Najafzadeh B, Asadzadeh Z, Motafakker Azad R, et al. The oncogenic potential of NANOG: An important cancer induction mediator[J]. J Cell Physiol, 2021, 236(4): 2443-2458. doi: 10.1002/jcp.30063