Application and Development of Artificial Intelligence in A Pathological Study of Urinary System Tumors
-
摘要:
2020年全球癌症统计数据显示,泌尿系肿瘤发病人数约占癌症总人数的13%。目前泌尿系肿瘤的诊断方法以影像学检查、内窥镜检查和病理检查为主。作为肿瘤诊断的“金标准”,病理检查存在病理医生缺乏、操作时间长等问题。人工智能具有强大的病理图像识别和特征分析能力,可作为辅助诊断,已经在多种泌尿系肿瘤中实现了肿瘤的自动诊断、分型、分期、分级和预后预测。但人工智能仍存在诸多不足,限制了其在临床的应用。本文就人工智能及其在泌尿系肿瘤病理研究中的应用进展作一综述。
Abstract:Global Cancer Statistics for 2020 show that urinary system tumors account for approximately 13% of the total number of cancers. At present, the diagnostic methods of urinary system tumors are imaging, endoscopy, and pathological examination. As the gold standard of tumor diagnosis, pathological examination has problems such as lack of pathologists and long operation time. Artificial intelligence (AI), with a strong ability for pathology image recognition and feature analysis, can be used as an auxiliary diagnosis. It has realized automatic diagnosis, typing, staging, grading, and prognosis prediction in several urinary system tumors. However, AI still has many shortcomings, which limit its clinical application. This article will review the progress of AI and its application in the pathological study of urinary system tumors.
-
Key words:
- Artificial intelligence /
- Pathology /
- Prostate cancer /
- Bladder cancer /
- Kidney cancer
-
Competing interests: The authors declare that they have no competing interests.作者贡献:倪鑫淼:提纲设计,文献收集整理,论文撰写杨瑞、陈志远:论文修改刘修恒:总体策划,论文审校
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. doi: 10.1038/s41568-018-0016-5
[3] Zhu X, Li X, Ong K, et al. Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears[J]. Nat Commun, 2021, 12(1): 3541. doi: 10.1038/s41467-021-23913-3
[4] Bastanlar Y, Ozuysal M. Introduction to machine learning[J]. Methods Mol Biol, 2014, 1107: 105-128.
[5] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
[6] McAlpine ED, Michelow P, Celik T. The Utility of Unsupervised Machine Learning in Anatomic Pathology[J]. Am J Clin Pathol, 2022, 157(1): 5-14. doi: 10.1093/ajcp/aqab085
[7] Roohi A, Faust K, Djuric U, et al. Unsupervised Machine Learning in Pathology: The Next Frontier[J]. Surg Pathol Clin, 2020, 13(2): 349-358. doi: 10.1016/j.path.2020.01.002
[8] Barakzai MA. Prostatic Adenocarcinoma: A Grading from Gleason to the New Grade-Group System: A Historical and Critical Review[J]. Asian Pac J Cancer Prev, 2019, 20(3): 661-666. doi: 10.31557/APJCP.2019.20.3.661
[9] Schuettfort VM, Pradere B, Rink M, et al. Pathomics in urology[J]. Curr Opin Urol, 2020, 30(6): 823-831. doi: 10.1097/MOU.0000000000000813
[10] Nir G, Hor S, Karimi D, et al. Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts[J]. Med Image Anal, 2018, 50: 167-180. doi: 10.1016/j.media.2018.09.005
[11] Arvaniti E, Fricker KS, Moret M, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning[J]. Sci Rep, 2018, 8(1): 12054. doi: 10.1038/s41598-018-30535-1
[12] Nagpal K, Foote D, Liu Y, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer[J]. NPJ Digit Med, 2019, 2: 48. doi: 10.1038/s41746-019-0112-2
[13] Borghesi M, Ahmed H, Nam R, et al. Complications After Systematic, Random, and Image-guided Prostate Biopsy[J]. Eur Urol, 2017, 71(3): 353-365. doi: 10.1016/j.eururo.2016.08.004
[14] Lucas M, Jansen I, Savci-Heijink CD, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies[J]. Virchows Arch, 2019, 475(1): 77-83. doi: 10.1007/s00428-019-02577-x
[15] Kott O, Linsley D, Amin A, et al. Development of a Deep Learning Algorithm for the Histopathologic Diagnosis and Gleason Grading of Prostate Cancer Biopsies: A Pilot Study[J]. Eur Urol Focus, 2021, 7(2): 347-351. doi: 10.1016/j.euf.2019.11.003
[16] Strom P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study[J]. Lancet Oncol, 2020, 21(2): 222-232. doi: 10.1016/S1470-2045(19)30738-7
[17] Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study[J]. Lancet Oncol, 2020, 21(2): 233-241. doi: 10.1016/S1470-2045(19)30739-9
[18] Wang Z, Song Y, Ye M, et al. The diverse roles of SPOP in prostate cancer and kidney cancer[J]. Nat Rev Urol, 2020, 17(6): 339-350. doi: 10.1038/s41585-020-0314-z
[19] Schaum Be Rg AJ, Rubin MA, Fuchs TJ. H & E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer[J]. BioRxiv, 2017.
[20] Lenis AT, Lec PM, Chamie K, et al. Bladder Cancer: A Review[J]. JAMA, 2020, 324(19): 1980-1991. doi: 10.1001/jama.2020.17598
[21] Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity[J]. Nat Rev Cancer, 2015, 15(1): 25-41. doi: 10.1038/nrc3817
[22] Kamoun A, de Reynies A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer[J]. Eur Urol, 2020, 77(4): 420-433. doi: 10.1016/j.eururo.2019.09.006
[23] Yin PN, Kc K, Wei S, et al. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches[J]. BMC Med Inform Decis Mak, 2020, 20(1): 162. doi: 10.1186/s12911-020-01185-z
[24] Woerl AC, Eckstein M, Geiger J, et al. Deep Learning Predicts Molecular Subtype of Muscle-invasive Bladder Cancer from Conventional Histopathological Slides[J]. Eur Urol, 2020, 78(2): 256-264. doi: 10.1016/j.eururo.2020.04.023
[25] Kang HW, Kim YH, Jeong P, et al. Expression levels of FGFR3 as a prognostic marker for the progression of primary pT1 bladder cancer and its association with mutation status[J]. Oncol Lett, 2017, 14(3): 3817-3824. doi: 10.3892/ol.2017.6621
[26] Loriot Y, Necchi A, Park SH, et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma[J]. N Engl J Med, 2019, 381(4): 338-348. doi: 10.1056/NEJMoa1817323
[27] Velmahos CS, Badgeley M, Lo YC. Using deep learning to identify bladder cancers with FGFR-activating mutations from histology images[J]. Cancer Med, 2021, 10(14): 4805-4813. doi: 10.1002/cam4.4044
[28] Loeffler CML, Ortiz Bruechle N, Jung M, et al. Artificial Intelligence-based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing?[J]. Eur Urol Focus, 2022, 8(2): 472-479. doi: 10.1016/j.euf.2021.04.007
[29] Lucas M, Jansen I, van Leeuwen TG, et al. Deep Learning-based Recurrence Prediction in Patients with Non-muscle-invasive Bladder Cancer[J]. Eur Urol Focus, 2022, 8(1): 165-172. doi: 10.1016/j.euf.2020.12.008
[30] Harmon SA, Sanford TH, Brown GT, et al. Multiresolution Application of Artificial Intelligence in Digital Pathology for Prediction of Positive Lymph Nodes From Primary Tumors in Bladder Cancer[J]. JCO Clin Cancer Inform, 2020, 4: 367-382.
[31] Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization[J]. Eur J Radiol, 2018, 99: 40-54. doi: 10.1016/j.ejrad.2017.12.008
[32] Tabibu S, Vinod PK, Jawahar CV. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning[J]. Sci Rep, 2019, 9(1): 10509. doi: 10.1038/s41598-019-46718-3
[33] van Oostenbrugge TJ, Futterer JJ, Mulders PFA. Diagnostic Imaging for Solid Renal Tumors: A Pictorial Review[J]. Kidney Cancer, 2018, 2(2): 79-93. doi: 10.3233/KCA-180028
[34] Zhu M, Ren B, Richards R, et al. Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides[J]. Sci Rep, 2021, 11(1): 7080. doi: 10.1038/s41598-021-86540-4
[35] Argani P. Translocation carcinomas of the kidney[J]. Genes Chromosomes Cancer, 2022, 61(5): 219-227. doi: 10.1002/gcc.23007
[36] Cheng J, Han Z, Mehra R, et al. Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma[J]. Nat Commun, 2020, 11(1): 1778. doi: 10.1038/s41467-020-15671-5
[37] Delahunt B, Eble JN, Egevad L, et al. Grading of renal cell carcinoma[J]. Histopathology, 2019, 74(1): 4-17. doi: 10.1111/his.13735
[38] Tian K, Rubadue CA, Lin DI, et al. Automated clear cell renal carcinoma grade classification with prognostic significance[J]. PLoS One, 2019, 14(10): e0222641. doi: 10.1371/journal.pone.0222641
[39] Holdbrook DA, Singh M, Choudhury Y, et al. Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns[J]. JCO Clin Cancer Inform, 2018, 2: 1-12.
[40] Piva F, Santoni M, Matrana MR, et al. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies[J]. Expert Rev Mol Diagn, 2015, 15(9): 1201-1210. doi: 10.1586/14737159.2015.1068122
[41] Acosta PH, Panwar V, Jarmale V, et al. Intratumoral Resolution of Driver Gene Mutation Heterogeneity in Renal Cancer Using Deep Learning[J]. Cancer Res, 2022, 82(15): 2792-2806. doi: 10.1158/0008-5472.CAN-21-2318
[42] Cheng J, Mo X, Wang X, et al. Identification of topological features in renal tumor microenvironment associated with patient survival[J]. Bioinformatics, 2018, 34(6): 1024-1030. doi: 10.1093/bioinformatics/btx723
[43] Chen S, Zhang N, Jiang L, et al. Clinical use of a machine learning histopathological image signature in diagnosis and survival prediction of clear cell renal cell carcinoma[J]. Int J Cancer, 2021, 148(3): 780-790. doi: 10.1002/ijc.33288
[44] Forsch S, Klauschen F, Hufnagl P, et al. Artificial Intelligence in Pathology[J]. Dtsch Arztebl Int, 2021, 118(12): 194-204.
[45] Go H. Digital Pathology and Artificial Intelligence Applications in Pathology[J]. Brain Tumor Res Treat, 2022, 10(2): 76-82. doi: 10.14791/btrt.2021.0032
[46] Rakha EA, Toss M, Shiino S, et al. Current and future applications of artificial intelligence in pathology: a clinical perspective[J]. J Clin Pathol, 2021, 74(7): 409-414. doi: 10.1136/jclinpath-2020-206908
-
期刊类型引用(3)
1. 赵莹,王萌,李志杰,马鑫,王立斌,张倩,余四九,潘阳阳. 乳源外泌体在乳腺炎防控中的生物学功能研究进展. 动物医学进展. 2023(08): 76-81 . 百度学术
2. 孙颖,王吉,郑雄,顾玮,胡梅洁. Circ_0101504/miR-454-3p/ARAP2通路在胃癌生长中的作用及其机制. 现代消化及介入诊疗. 2023(05): 584-589+594 . 百度学术
3. 郑炜智,刘炳辉,杨继洲,盛玲玲,付承林. circ_ACAP2对胃癌细胞BGC–823增殖凋亡的影响及作用机制. 中国现代医生. 2022(27): 15-20 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1942
- HTML全文浏览量: 788
- PDF下载量: 813
- 被引次数: 3