Research Progress of Single-cell Transcriptome Sequencing in Immune Microenvironment of Nasopharyngeal Carcinoma
-
摘要:
分析近年来鼻咽癌单细胞转录组测序的研究进展,对鼻咽癌免疫微环境进行剖析,总结髓系细胞、T细胞、B细胞、NK细胞等免疫细胞和成纤维细胞在鼻咽癌组织中的作用机制,为鼻咽癌的诊断、治疗和预后预测提供参考。
Abstract:We analyze the recent research progress of single-cell transcriptome sequencing of nasopharyngeal carcinoma (NPC), dissect its tumor immune microenvironment, and focus on the role of myeloid cells, T cells, B cells, NK cells, and fibroblasts in the mechanism of action in NPC tissues to provide reference for the diagnosis, treatment, and prognosis prediction of NPC.
-
Competing interests: The authors declare that they have no competing interests.作者贡献:应敏:文献整理、论文构思及撰写刘金坤:论文指导、校对及修改
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] Zhu Q, Zhao G, Li Y, et al. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma[J]. MedComm, 2021, 2(2): 175-206. doi: 10.1002/mco2.32
[3] Wang YQ, Chen YP, Zhang Y, et al. Prognostic significance of tumor-infiltrating lymphocytes in nondisseminated nasopharyngeal carcinoma: A large-scale cohort study[J]. Int J Cancer, 2018, 142(12): 2558-2566. doi: 10.1002/ijc.31279
[4] Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]. J Hematol Oncol, 2021, 14(1): 1-26. doi: 10.1186/s13045-020-01025-7
[5] Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial[J]. Mol Syst Biol, 2019, 15(6).
[6] Ren X, Zhang L, Zhang Y, et al. Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment[J]. Annu Rev Immunol, 2021, 39: 583-609. doi: 10.1146/annurev-immunol-110519-071134
[7] Chen YP, Yin JH, Li WF, et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 1024-1042. doi: 10.1038/s41422-020-0374-x
[8] Zhang L, Li Z, Skrzypczynska KM, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer[J]. Cell, 2020, 181(2): 442-459. doi: 10.1016/j.cell.2020.03.048
[9] Gong L, Kwong DLW, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1): 1-18. doi: 10.1038/s41467-020-20314-w
[10] Jin S, Li R, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 950-965. doi: 10.1038/s41422-020-00402-8
[11] Cheng S, Li Z, Gao R, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells[J]. Cell, 2021, 184(3): 792-809. doi: 10.1016/j.cell.2021.01.010
[12] Zhang Q, He Y, Luo N, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma[J]. Cell, 2019, 179(4): 829-845. doi: 10.1016/j.cell.2019.10.003
[13] Michea P, Noël F, Zakine E, et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific[J]. Nat Immunol, 2018, 19(8): 885-897. doi: 10.1038/s41590-018-0145-8
[14] Zilionis R, Engblom C, Pfirschke C, et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species[J]. Immunity, 2019, 50(5): 1317-1334. doi: 10.1016/j.immuni.2019.03.009
[15] Liu Y, Zhang Q, Xing B, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis[J]. Cancer Cell, 2022, 40(4): 424-437. doi: 10.1016/j.ccell.2022.02.013
[16] Podolsky MA, Bailey JT, Gunderson AJ, et al. Differentiated state of initiating tumor cells is key to distinctive immune responses seen in H-RasG12V-induced squamous tumors[J]. Cancer Immunol Res, 2017, 5(3): 198-210. doi: 10.1158/2326-6066.CIR-16-0304
[17] Ren XW, Zhang L, Zhang YY, et al. Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment[J]. Annu Rev Immunol, 2021, 39: 583-609. doi: 10.1146/annurev-immunol-110519-071134
[18] Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer[J]. Int J Cancer, 2008, 122(10): 2286-2293. doi: 10.1002/ijc.23392
[19] Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response[J]. Mol Med Rep, 2018, 17(4): 4867-4873.
[20] Jang JE, Hajdu CH, Liot C, et al. Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer[J]. Cell Rep, 2017, 20(3): 558-571. doi: 10.1016/j.celrep.2017.06.062
[21] Sánchez-Paulete AR, Teijeira A, Cueto FJ, et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy[J]. Ann Oncol, 2017, 28: 74.
[22] Liu Y, He S, Wang XL, et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution[J]. Nat Commun, 2021, 12(1): 1-18. doi: 10.1038/s41467-020-20314-w
[23] Peng WS, Zhou X, Yan WB, et al. Dissecting the heterogeneity of the microenvironment in primary and recurrent nasopharyngeal carcinomas using single-cell RNA sequencing[J]. Oncoimmunology, 2022, 11(1): 2026583. doi: 10.1080/2162402X.2022.2026583
[24] Li JP, Wu CY, Chen MY, et al. PD-1+CXCR5-CD4+Th-CXCL13 cell subset drives B cells into tertiary lymphoid structures of nasopharyngeal carcinoma[J]. J Immunother Cancer, 2021, 9(7): e002101. doi: 10.1136/jitc-2020-002101
[25] Gong L, Kwong DL, Dai W, et al. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma[J]. Nat Commun, 2021, 12(1): 1-18. doi: 10.1038/s41467-020-20314-w
[26] Workel HH, Lubbers JM, Arnold R, et al. A Transcriptionally Distinct CXCL13+CD103+CD8+ T-cell Population Is Associated with B-cell Recruitment and Neoantigen Load in Human Cancer[J]. Cancer Immunol Res, 2019, 7(5): 784-796. doi: 10.1158/2326-6066.CIR-18-0517
[27] Zhang Y, Chen H, Mo H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12): 1578-1593. doi: 10.1016/j.ccell.2021.09.010
[28] He J, Xiong X, Yang H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response[J]. Cell Res, 2022, 32(6): 530-542. doi: 10.1038/s41422-022-00627-9
[29] Jin S, Li R, Chen MY, et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma[J]. Cell Res, 2020, 30(11): 950-965. doi: 10.1038/s41422-020-00402-8
[30] Thommen DS, Koelzer VH, Herzig P, et al. A transcriptionally and functionally distinct pd-1+ cd8+ t cell pool with predictive potential in non-small-cell lung cancer treated with pd-1 blockade[J]. Nat Med, 2018, 24(7): 994-1004. doi: 10.1038/s41591-018-0057-z
[31] De Groen RA, Groothuismink ZM, Liu BS, et al. IFN-is able to augment TLR-mediated activation and subsequent function of primary human B cells[J]. J Leukoc Biol, 2015, 98(4): 623-630. doi: 10.1189/jlb.3A0215-041RR
[32] Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, et al. Direct effects of type I interferons on cells of the immune system[J]. Clin Cancer Res, 2011, 17(9): 2619-2627. doi: 10.1158/1078-0432.CCR-10-1114
[33] Kyriakidis NC, Kapsogeorgou EK, Gourzi VC, et al. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway[J]. Clin Exp Immunol, 2014, 178(3): 548-560. doi: 10.1111/cei.12432
[34] Böttcher JP, Bonavita E, Chakravarty P, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control[J]. Cell, 2018, 172(5): 1022-1037. doi: 10.1016/j.cell.2018.01.004