Significance and Prospect of Tryptophan Metabolism in Treatment of Tumor Immune Checkpoint Inhibitors
-
摘要:
尽管近年来免疫检查抑制剂(ICIs)在肿瘤治疗中取得了突破性进展,但多数患者并没有从中获益,主要原因是其疗效受到免疫微环境的干扰。研究表明,色氨酸代谢参与了肿瘤免疫抑制微环境的形成,与ICIs的疗效密切相关。目前,靶向抑制色氨酸代谢的犬尿氨酸(kyn)途径已经进入临床试验阶段,另外两条代谢途径——5-羟色胺和吲哚途径也引起越来越多的关注。本文就这一领域的最新进展进行综述。
Abstract:Although immune checkpoint inhibitors (ICIs) have great breakthrough in cancer treatment in recent years, most patients have not benefited from it on account of immune microenvironment. Studies have shown that tryptophan metabolism is not only involved in the formation of tumor immunosuppressive microenvironment but also plays an important role in the therapeutic application of ICIs. At present, inhibiting the kynurenine pathway of tryptophan metabolism is now in various stages of clinical trials, while the other two metabolic pathways, 5-HT and the indole pathway, also have aroused wide concern. This article reviews the latest developments in this field.
-
Key words:
- Tryptophan metabolism /
- Kynurenine /
- 5-hydroxytryptamine /
- Indole /
- Immune checkpoint
-
Competing interests: The authors declare that they have no competing interests.作者贡献高雅媚:文献检索、论文撰写王斌、李中信:文献检索及修改贾漪涛:论文修改
-
表 1 Trp代谢在肿瘤ICIs治疗中的应用
Table 1 Application of tryptophan metabolism in treatment of tumor immune checkpoint inhibitors
-
[1] Peyraud F, Italiano A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors[J]. Cancers (Basel), 2020, 12(6): 1502. doi: 10.3390/cancers12061502
[2] Arlauckas SP, Garris CS, Kohler RH, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy[J]. Sci Transl Med, 2017, 9(389): eaal3604. doi: 10.1126/scitranslmed.aal3604
[3] Chuang YC, Tseng JC, Huang LR, et al. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade[J]. Front Immunol, 2020, 11: 1075. doi: 10.3389/fimmu.2020.01075
[4] Agus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease[J]. Cell Host Microbe, 2018, 23(6): 716-724. doi: 10.1016/j.chom.2018.05.003
[5] Platten M, Nollen EAA, Röhrig UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond[J]. Nat Rev Drug Discov, 2019, 18(5): 379-401. doi: 10.1038/s41573-019-0016-5
[6] Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294. doi: 10.1038/s41467-018-05470-4
[7] Venkateswaran N, Conacci-Sorrell M. Kynurenine: an oncometabolite in colon cancer[J]. Cell Stress, 2020, 4(1): 24-26. doi: 10.15698/cst2020.01.210
[8] Choi W, Moon JH, Kim H. Serotonergic regulation of energy metabolism in peripheral tissues[J]. J Endocrinol, 2020, 245(1): R1-R10. doi: 10.1530/JOE-19-0546
[9] Gao K, Mu CL, Farzi A, et al. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain[J]. Adv Nutr, 2020, 11(3): 709-723. doi: 10.1093/advances/nmz127
[10] Holmgaard RB, Zamarin D, Li Y, et al. Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner[J]. Cell Rep, 2015, 13(2): 412-424. doi: 10.1016/j.celrep.2015.08.077
[11] Munn DH, Mellor AL. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance[J]. Trends Immunol, 2016, 37(3): 193-207. doi: 10.1016/j.it.2016.01.002
[12] Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642. doi: 10.1016/j.immuni.2005.03.013
[13] van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance[J]. Front Immunol, 2015, 6: 34. http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM25691885.aspx
[14] Prendergast GC, Metz R, Muller AJ, et al. IDO2 in Immunomodulation and Autoimmune Disease[J]. Front Immunol, 2014, 5: 585. http://www.ncbi.nlm.nih.gov/pubmed/25477879
[15] Comai S, Bertazzo A, Brughera M, et al. Tryptophan in health and disease[J]. Adv Clin Chem, 2020, 95: 165-218.
[16] Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy-Challenges and Opportunities[J]. Trends Pharmacol Sci, 2018, 39(3): 307-325. doi: 10.1016/j.tips.2017.11.007
[17] Hjortsø MD, Larsen SK, Kongsted P, et al. Tryptophan 2, 3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer[J]. Oncoimmunology, 2015, 4(1): e968480. doi: 10.4161/21624011.2014.968480
[18] Triplett TA, Garrison KC, Marshall N, et al. Reversal of indoleamine 2, 3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme[J]. Nat Biotechnol, 2018, 36(8): 758-764. doi: 10.1038/nbt.4180
[19] Nowak EC, de Vries VC, Wasiuk A, et al. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation[J]. J Exp Med, 2012, 209(11): 2127-2135. doi: 10.1084/jem.20120408
[20] Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan[J]. Trends Pharmacol Sci, 2013, 34(2): 136-143. doi: 10.1016/j.tips.2012.09.006
[21] Badawy AA. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects[J]. Int J Tryptophan Res, 2017, 10: 1178646917691938.
[22] Buck MD, O'Sullivan D, Geltink RIK, et al. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming[J]. Cell, 2016, 166(1): 63-76. doi: 10.1016/j.cell.2016.05.035
[23] Peters MA, Walenkamp AM, Kema IP, et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis[J]. Drug Resist Updat, 2014, 17(4-6): 96-104. doi: 10.1016/j.drup.2014.09.001
[24] Herr N, Bode C, Duerschmied D. The Effects of Serotonin in Immune Cells[J]. Front Cardiovasc Med, 2017, 4: 48. doi: 10.3389/fcvm.2017.00048
[25] Müller T, Dürk T, Blumenthal B, et al. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo[J]. PLoS One, 2009, 4(7): e6453. doi: 10.1371/journal.pone.0006453
[26] Chen Y, Leon-Ponte M, Pingle SC, et al. T lymphocytes possess the machinery for 5-HT synthesis, storage, degradation and release[J]. Acta Physiol (Oxf), 2015, 213(4): 860-867. doi: 10.1111/apha.12470
[27] Brincks EL, Adams J, Wang L, et al. Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1[J]. Oncotarget, 2020, 11(25): 2438-2461. doi: 10.18632/oncotarget.27646
[28] Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. e6. doi: 10.1016/j.chom.2017.06.007
[29] Li H, Bullock K, Gurjao C, et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade[J]. Nat Commun, 2019, 10(1): 4346. doi: 10.1038/s41467-019-12361-9
[30] Long GV, Dummer R, Hamid O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study[J]. Lancet Oncol, 2019, 20(8): 1083-1097. doi: 10.1016/S1470-2045(19)30274-8
[31] Iga N, Otsuka A, Hirata M, et al. Variable indoleamine 2, 3-dioxygenase expression in acral/mucosal melanoma and its possible link to immunotherapy[J]. Cancer Sci, 2019, 110(11): 3434-3441. doi: 10.1111/cas.14195
[32] Terai M, Londin E, Rochani A, et al. Expression of Tryptophan 2, 3-Dioxygenase in Metastatic Uveal Melanoma[J]. Cancers (Basel), 2020, 12(2): 405. doi: 10.3390/cancers12020405
[33] Agulló-Ortuño MT, Gómez-Martín Ó, Ponce S, et al. Blood Predictive Biomarkers for Patients With Non-small-cell Lung Cancer Associated With Clinical Response to Nivolumab[J]. Clin Lung Cancer, 2020, 21(1): 75-85. doi: 10.1016/j.cllc.2019.08.006
[34] Yamasuge W, Yamamoto Y, Fujigaki H, et al. Indoleamine 2, 3-dioxygenase 2 depletion suppresses tumor growth in a mouse model of Lewis lung carcinoma[J]. Cancer Sci, 2019, 110(10): 3061-3067. doi: 10.1111/cas.14179
[35] Hsu YL, Hung JY, Chiang SY, et al. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis[J]. Oncotarget, 2016, 7(19): 27584-27598. doi: 10.18632/oncotarget.8488
[36] Yang D, Zhang S, Fang X, et al. N-Benzyl/Aryl Substituted Tryptanthrin as Dual Inhibitors of Indoleamine 2, 3-Dioxygenase and Tryptophan 2, 3-Dioxygenase[J]. J Med Chem, 2019, 62(20): 9161-9174. doi: 10.1021/acs.jmedchem.9b01079
[37] Wang LT, Chiou SS, Chai CY, et al. Intestine-Specific Homeobox Gene ISX Integrates IL6 Signaling, Tryptophan Catabolism, and Immune Suppression[J]. Cancer Res, 2017, 77(15): 4065-4077. doi: 10.1158/0008-5472.CAN-17-0090
[38] Huang TT, Yen MC, Lin CC, et al. Skin delivery of short hairpin RNA of indoleamine 2, 3 dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer[J]. Cancer Sci, 2011, 102(12): 2214-2220. doi: 10.1111/j.1349-7006.2011.02094.x
[39] Brown ZJ, Yu SJ, Heinrich B, et al. Indoleamine 2, 3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2018, 67(8): 1305-1315. doi: 10.1007/s00262-018-2190-4
[40] Hua S, Chen F, Wang X, et al. Pt(IV) hybrids containing a TDO inhibitor serve as potential anticancer immunomodulators[J]. J Inorg Biochem, 2019, 195: 130-140. doi: 10.1016/j.jinorgbio.2019.02.004
[41] Goodman AM, Sokol ES, Frampton GM, et al. Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy[J]. Cancer Immunol Res, 2019, 7(10): 1570-1573. doi: 10.1158/2326-6066.CIR-19-0149
[42] Walczak K, Langner E, Szalast K, et al. A Tryptophan Metabolite, 8-Hydroxyquinaldic Acid, Exerts Antiproliferative and Anti-Migratory Effects on Colorectal Cancer Cells[J]. Molecules, 2020, 25(7): 1655. doi: 10.3390/molecules25071655
[43] Yang L, Chen Y, He J, et al. 4, 6-Substituted-1H-Indazoles as potent IDO1/TDO dual inhibitors[J]. Bioorg Med Chem, 2019, 27(6): 1087-1098. doi: 10.1016/j.bmc.2019.02.014
计量
- 文章访问数: 2385
- HTML全文浏览量: 568
- PDF下载量: 1349