高级搜索

免疫检查点抑制剂的免疫相关不良事件预测生物标志物研究进展

李颖, 尹皓原, 潘丽, 冯磊

李颖, 尹皓原, 潘丽, 冯磊. 免疫检查点抑制剂的免疫相关不良事件预测生物标志物研究进展[J]. 肿瘤防治研究, 2021, 48(4): 418-423. DOI: 10.3971/j.issn.1000-8578.2021.20.0997
引用本文: 李颖, 尹皓原, 潘丽, 冯磊. 免疫检查点抑制剂的免疫相关不良事件预测生物标志物研究进展[J]. 肿瘤防治研究, 2021, 48(4): 418-423. DOI: 10.3971/j.issn.1000-8578.2021.20.0997
LI Ying, YIN Haoyuan, PAN Li, FENG Lei. Recent Advance in Biomarkers for Predicting Immune-related Adverse Events Caused by Immune Checkpoint Inhibitors[J]. Cancer Research on Prevention and Treatment, 2021, 48(4): 418-423. DOI: 10.3971/j.issn.1000-8578.2021.20.0997
Citation: LI Ying, YIN Haoyuan, PAN Li, FENG Lei. Recent Advance in Biomarkers for Predicting Immune-related Adverse Events Caused by Immune Checkpoint Inhibitors[J]. Cancer Research on Prevention and Treatment, 2021, 48(4): 418-423. DOI: 10.3971/j.issn.1000-8578.2021.20.0997

免疫检查点抑制剂的免疫相关不良事件预测生物标志物研究进展

详细信息
    作者简介:

    李颖(1992-),女,硕士,检验师,主要从事肿瘤免疫学研究

    通信作者:

    冯磊(1974-),男,博士,主任技师,主要从事心血管、内分泌、自身免疫疾病等实验室诊断研究,E-mail: fngj2004@163.com

  • 中图分类号: R730.3

Recent Advance in Biomarkers for Predicting Immune-related Adverse Events Caused by Immune Checkpoint Inhibitors

More Information
  • 摘要:

    近年来,以免疫检查点为靶点的肿瘤免疫疗法因疗效显著而备受关注。然而随着免疫检查点抑制剂(ICIs)的推广应用,其相关不良事件(irAEs)的报道也越来越多。irAEs使接受ICIs治疗的肿瘤患者承担着额外的致命风险,限制着ICIs的使用。为帮助患者主动预防irAEs,研究具有irAEs预测价值的生物标志物意义重大。本文将从血清学、遗传学、微生物学等多个层面对irAEs有预测价值的生物标志物的研究进展作一综述。

     

    Abstract:

    In recent years, tumor immunotherapy with immune checkpoint as the target has attracted much attention because of its remarkable efficacy. However, with the application of immune-checkpoint inhibitors (ICIs), more and more immune-related adverse events (irAEs) have been reported. IrAEs impose an additional risk of death on tumor patients treated with ICIs, limiting the widespread use of ICIs. To help patients actively prevent irAEs, biomarkers with the predictive value of irAEs are of great significance. This paper reviews the biomarkers with predictive value for irAEs from the aspects of serology, genetics and microbiology.

     

  • 小细胞肺癌(SCLC)作为肺癌中的常见类型,占所有新确诊肺癌的13%左右[1]。根据肿瘤侵袭范围大小,SCLC可分为局限期和广泛期,约70%的患者在确诊时已为广泛期。其肿瘤恶性程度较高,极具侵袭性,预后相对较差,5年总生存率低于10%[2]。目前基于铂类药物的联合化疗方案仍然是SCLC治疗的标准方案,与不含铂的方案相比,虽然具有较高的应答率和显著的生存参数改善,但SCLC仍易出现复发转移与耐药率高的问题[3]。近年来,相关学者在SCLC的靶向治疗、免疫治疗方面也做出了相应探索,但其研究进展仍较缓慢,临床效果也十分有限。盐酸安罗替尼作为一种新型小分子多靶点酪氨酸激酶抑制剂,主要通过有效抑制血管内皮细胞生长因子受体(vascular endothelial growth factor receptor, VEGFR)、血小板衍生生长因子受体(platelet-derived growth factor receptor, PDGFR)、成纤维生长因子受体(fibroblast growth factor receptor, FGFR)和干细胞生长因子受体等激酶的活性,进而发挥抗肿瘤血管生成和抑制肿瘤生长的作用[4],是国内唯一获批NSCLC及SCLC的抗血管生成药[5]。有研究结果显示安罗替尼治疗ES-SCLC仍存在局限性,不同ES-SCLC患者对安罗替尼的治疗反应不尽相同,无进展生存期与总生存期之间也存在较大差异性[6-8]。目前研究学者尝试从安罗替尼疗效的预测因子方面进行了探索,一些可能性的预测因子也被挖掘,但其效果并不是很理想,仍待进一步考究[9-10]。中医药在治疗ES-SCLC方面优势明显,其中医证候分布也极具特色,具备成为预测因子的潜力,截止目前尚未发现同类研究。故本研究考虑将中医证素因素纳入,建立中医证素参与的安罗替尼治疗既往接受过多线化疗进展的广泛期SCLC患者预后的预测列线图,并对模型预测效力进行评估。

    纳入2020年1月至2022年6月期间在唐山市人民医院放化疗科接受安罗替尼治疗的广泛期SCLC患者127例。本研究经唐山市人民医院伦理委员会批准,所有患者在入组前均已签署了知情同意书。诊断标准:(1)西医诊断标准:采用中华人民共和国国家卫生健康委员会发布的《原发性肺癌诊疗指南(2022年版)》[11]进行诊断;(2)中医病性证素诊断标准:依据朱文锋的《证素辨证学》[12],按照“证候辨证素计算表”,以各症状对各证素贡献度之和≥20时,即可诊断为该病性证素,同时根据权值之和辨别证素的轻重。纳入标准:(1)年龄为18~80周岁;(2)组织学或细胞学和影像学确诊为SCLC;(3)既往接受过一线含铂两药化疗失败的难治性SCLC患者,或接受过二线及以上化疗的SCLC患者;(4)肿瘤分期为广泛期;(5)至少存在一个可测量病灶。排除标准:(1)有严重的重要脏器功能不全者;(2)合并其他原发肿瘤;(3)既往使用过其他血管靶向药;(4)依从性差,未按规定用药,疗效无法判定者;(5)未使用其他抗肿瘤药物及非抗肿瘤药物者。

    由肿瘤内科专业医师采集纳入研究对象的年龄、性别、PS评分、药物剂量、治疗线数、不良反应、疗效评价、无进展生存期、总生存期、是否发生脑转移、肝转移、骨转移等一般临床信息。利用X-tile软件寻找出年龄截断值并进行分组[13]。由两位副高级以上职称的中西医结合医师根据《证素辨证学》、《中药新药临床研究指导原则》[14]及相关参考文献制定包括四诊信息在内的临床观察研究表,根据患者的中医四诊信息进行中医病性证素辨别。

    早餐前,空腹服用盐酸安罗替尼胶囊(正大天晴药业;国药准字:H20180002;规格:8毫克/粒或12毫克/粒),每日1次,每次1/粒。连续服药2周,停药1周,即3周(21天)为一个疗程。服药期间,密切监测不良反应,并根据不良反应情况进行剂量调整以使患者能够耐受;出现不可耐受不良反应或疾病进展时,停止用药。

    每2个治疗周期(42天)进行一次疗效评价。客观疗效指标具体依据RECIST 1.1评价标准进行治疗效果的评估。无进展生存期(PFS)定义为开始口服安罗替尼直至肿瘤客观进展或死亡时间。总生存期(OS)定义为开始口服安罗替尼至任何原因引起的死亡时间。

    使用SPSS23.0软件和R软件(版本4.0.4)中的“glmnet”和“rms”包进行统计分析。计数资料采用频数与百分比表示,采用卡方检验或者Fisher精确概率法进行检验。计量资料采用平均数、标准差与中位数表示,符合正态分布采用t检验,不符合则采用Wilcoxon符号秩和检验。采用Kaplan-Meier法进行单因素生存分析,Log rank法进行检验,单因素分析中对生存时间影响显著的因素纳入Cox回归模型进行多因素分析,筛选出独立的预后影响因素,应用R语言构建预测安罗替尼治疗广泛期小细胞肺癌预后的列线图预测模型,通过C-index指数评估模型的预测能力,应用校准曲线判断模型预测值与真实值之间的符合度。采用双侧检验,P < 0.05为差异有统计学意义。

    127例广泛期SCLC患者中位OS为4个月,PFS为2个月。年龄、性别、PS评分、治疗线数、使用药物剂量、脑转移、肝转移、骨转移情况,见表 1

    表  1  127例广泛期SCLC患者的一般临床资料
    Table  1  General clinical data of 127 patients with ESSCLC
    下载: 导出CSV 
    | 显示表格

    127例广泛期SCLC患者中医证素分布频率由高到低依次为痰、阴虚、热、气虚、血瘀、阳虚、湿、其他(包括气滞3例,血虚2例,血热1例,阳郁3例),见表 2

    表  2  127例广泛期SCLC患者的中医证素情况
    Table  2  Distribution of traditional Chinese medicine syndrome elements in 127 patients with ES-SCLC
    下载: 导出CSV 
    | 显示表格

    127例广泛期SCLC患者经安罗替尼治疗2个周期后,客观缓解率为21.26%,疾病控制率为79.53%,见表 3

    表  3  127例广泛期SCLC患者的疗效评价
    Table  3  Efficacy evaluation of 127 patients with ES-SCLC
    下载: 导出CSV 
    | 显示表格

    经Kaplan-Meier法单因素生存分析显示,年龄(P=0.047)、PS评分(P < 0.01)、脑转移(P=0.002)、气虚病性证素(P=0.033)、阴虚病性证素(P=0.036)、血瘀病性证素(P=0.004)是影响SCLC患者预后的相关危险因素,见表 4

    表  4  127例广泛期SCLC患者预后的单因素分析结果
    Table  4  Univariate analysis of prognosis of 127 patients with ES-SCLC
    下载: 导出CSV 
    | 显示表格

    将单因素分析中的年龄、PS评分、脑转移、气虚病性证素、阴虚病性证素、血瘀病性证素纳入Cox回归模型行多因素分析发现,PS评分(HR=2.188, 95%CI: 1.302~3.675, P=0.003)、脑转移(HR=1.891, 95%CI: 1.128~3.171, P=0.016)、血瘀病性证素(HR=1.691, 95%CI: 1.060~2.699, P=0.028)是影响安罗替尼治疗广泛期SCLC患者预后的独立危险因素,见图 1

    图  1  127例广泛期SCLC患者预后的多因素分析结果
    Figure  1  Multivariate prognostic analysis of 127 patients with ES-SCLC

    基于多因素Cox回归分析筛选出来的PS评分、脑转移、血瘀病性证素这3个独立预测因子,建立安罗替尼治疗广泛期SCLC患者6个月、9个月生存概率的列线图预测模型,见图 2。在该列线图中,每一个独立预测因素都有其对应的分数(Points),将各项预测因素所对应的分数相加可以分别得出6个月、9个月生存概率的总分(Total Points),从而得出广泛期SCLC患者经安罗替尼治疗后6个月、9个月的生存概率。该模型预测安罗替尼治疗广泛期SCLC患者预后的C-index值为0.689。校准曲线结果显示,预测值与真实值之间符合的平均绝对误差为0.089和0.046,预测风险接近实际风险,符合度好,见图 3

    图  2  经安罗替尼治疗后广泛期SCLC患者预后的列线图预测模型
    Figure  2  Prognosis prediction model of patients with ES-SCLC after anlotinib therapy
    图  3  预测6个月、9个月生存概率的校准曲线图
    Figure  3  Calibration curves predicting 6- and 9-month survival probabilities

    SCLC对放疗和化疗敏感,多年来,放化疗一直是SCLC的主要一线治疗手段,但治疗后易耐药,因此抗血管生成治疗的研究受到关注。目前,抗血管生成药物主要聚焦于单克隆抗体(如Bevacizumab)、内源性血管生成抑制剂(如Endostar)、抗血管生成融合蛋白(如Aflibercept)和小分子酪氨酸激酶抑制剂(如安罗替尼等)4类[15]。一项随机研究证实,Bevacizumab明显改善了SCLC患者的PFS,但未能延长OS,此外在该项研究中参与试验的57例SCLC患者有9%的患者在Bevacizumab治疗期间出现了G3~4毒性[16]。重组人血管内皮抑素(Endostar)通过抑制形成血管的内皮细胞迁移而抑制肿瘤新生血管生成,从而达到抑制恶性肿瘤生长的目的[17]。目前临床多将此应用于NSCLC的治疗,而应用于SCLC治疗的报道相对较少且滞后。Aflibercept(VEGF Trap)是一种重组的VEGF受体-抗体融合蛋白,对VEGF-A的亲和力高于Bevacizumab,其在肺癌的治疗中显示出潜在优势,但缺乏大型临床试验验证[18]。安罗替尼作为中国唯一获批NSCLC、SCLC三线治疗的靶向药,明显延长了中国广泛期SCLC患者的PFS和OS[16],其有效性及安全性也得到了相关临床研究的证实,因此被广泛应用于中国ES-SCLC患者的治疗。

    安罗替尼是一种多靶点酪氨酸激酶抑制剂,可抑制肿瘤血管生成,在临床试验中表现出良好的抗癌疗效和可接受的安全性。Gao等[19]研究发现,接受安罗替尼治疗的40例ES-SCLC患者PFS为3.0个月,OS为7.8个月,并且DCR为45.0%。而本研究中,经安罗替尼治疗的127例ES-SCLC患者中位OS为4个月,PFS为2个月,DCR为79.53%,二者存在一定偏差,考虑与样本量及地域分布有关。该项研究同时显示ECOG评分 > 1可能是安罗替尼预后不良的危险因素,与本研究结果中PS评分是影响ES-SCLC患者预后的独立影响因素具有一致性,并且PS评分≥2分时,患者预后不良。王静怡等[8]在一项安罗替尼二三线治疗ES-SCLC患者预后的研究中证实,存在脑转移和血浆IL-8 > 17.7 ng/L是接受安罗替尼二三线治疗的ES-SCLC患者独立的预后不良因素。与本研究筛选出来的存在脑转移独立因素一致,表明本研究与既往研究结果相符。查阅既往资料未发现有从中医药角度切入分析影响安罗替尼治疗ES-SCLC患者预后相关因素的文献,但不乏肺癌中医证型与某些药物治疗非小细胞肺癌疗效及预后相关性的报道[20-22]。长期临床研究发现,SCLC患者的中医证型分布具有一定的规律性,而作为构成中医证型的证候要素,一定程度上完善了疾病辨证的客观性,使得以往对中医疾病经验性辨证的模糊性诊断转变为较为清晰、客观的标准化诊断,更易被临床接受。基于此,考虑将ES-SCLC患者的中医证素作为影响因素纳入考虑范围,建立中医证素参与的安罗替尼多线治疗广泛期小细胞肺癌患者预后的列线图模型,其中血瘀病性证素作为独立预测因子被筛选出来。中医理论认为血瘀日久不畅易形成瘀血,而瘀血作为病理产物被认为是包括肺癌在内的多种疾病预后不良的危险因素。既往未发现把中医证候要素结合到预测模型中的报道,建立中医证素参与的预测模型可能提升模型预测效力,而且可根据研究结果及早采取中医方法进行预防干预,比如对于存在血瘀病性证素的ES-SCLC患者可适当予活血化瘀药物干预,以提高患者预后。

    既往文献研究多认为年龄为癌症的独立预后因素,而本文研究中年龄被排除在外,考虑原因包括:一方面年龄带来的预后影响可能被多种因素,特别是PS评分(随着年龄的增加,患者的体力状态往往更差)所抵消。Chen等[23]的一项随机多中心Ⅱ期试验研究也提示年龄与安罗替尼治疗SCLC的预后无明显相关性;Wu等[24]在另一项前瞻性Ⅱ期临床试验中同样发现,年龄不是影响安罗替尼治疗SCLC预后的独立影响因素,这些结果与本研究结果一致;另外,本研究选择的安罗替尼抗血管生成治疗,患者耐受性较好,与化疗相比,即使高龄患者也能够保持较好的治疗依从性和连续性,这些情况可能为高龄患者带来切实的生存获益,这也体现在年龄不再是独立的预后因素。由于本研究纳入的病例数有限,可能存在一定偏倚,未来会扩充病例,进一步探讨年龄对于预后的影响。此外,研究单因素分析发现气虚和阴虚病性证素为安罗替尼疗效的负性预测指标,而在多因素分析中,这两个指标被证实不是独立的预测因素。气虚、阴虚证的患者在中医上属于虚证,以正气不足为主要临床表现,即体力状态不佳——PS评分低。推测在多因素分析时,其对于安罗替尼疗效的预测作用被体力状态评分所抵消。安罗替尼通过竞争性结合VEGFR/PDGF/FGFR上的位点,阻断上述信号转导途径,抑制血管生成,进而使肿瘤细胞缺乏营养而凋亡。血瘀证患者,瘀血内阻,致机体气血运行不畅,其病理生理本质是氧供和代谢物清除障碍,从而造成肿瘤微环境处于乏氧状态。本研究发现血瘀证患者的抗血管生成药物治疗效果不佳,推测乏氧的微环境可能使肿瘤更能耐受以抑制血管生成为主要机制的抗肿瘤药物,如安罗替尼。而非血瘀证患者的肿瘤血管丰富,供氧充足,抗血管生成药更易发挥作用,可以通过阻断肿瘤的血管生成,发挥确切的抗肿瘤作用。这也提示临床中针对此类患者可及早采取有效手段进行干预,对提高患者预后具有指导意义。

    PS评分≥2分、存在脑转移、具有血瘀病性证素被认为是ES-SCLC患者预后不良的危险因素。本研究采用这三个独立预测因素建立的中医证素参与的安罗替尼多线治疗广泛期小细胞肺癌患者预后的列线图模型,可推测ES-SCLC患者6个月、9个月的生存概率。列线图模型的一致性系数(C-index)为0.689,处于0.50和0.70之间,其准确度相对较低,提示该模型预测性能需要进一步提升,下一步研究考虑将更多的预测因素纳入其中,以期进一步提升模型的预测效力。此外预测6个月、9个月生存概率的校准曲线结果显示符合度好,说明该模型具备一定的预测性能,可应用于临床实际,为安罗替尼更好地应用于临床提供中西医结合辨证治疗依据。

    既往研究多以西医学相关因素作为影响因子去构建肺癌患者预后的预测模型,事实上,在中医“治未病”理论指导下,中医证候作为对四诊信息的凝练归纳,以其不同于西医的视角,宏观反映了疾病的本质以及疾病转归,可用来预测疾病的预后。将中医证素作为影响因子参与模型构建,实现了预测因子的中西医结合及扩展,相比以往单一纳入西医相关影响因素的预测模型而言,本研究所构建的预测模型的预测效力在一定程度上得到了提高,为从中医药角度出发探寻影响安罗替尼治疗ES-SCLC患者预后的影响因素提供了新思路,但该模型的推广和应用仍需要大样本量的循证医学数据和前瞻性预后预测的研究来加以验证。

    Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    李颖: 设计并撰写文章
    尹皓原: 收集文献资料
    潘丽: 分类整理资料
    冯磊: 审核文章
  • [1]

    Judd J, Zibelman M, Handorf E, et al. Immune-Related Adverse Events as a Biomarker in Non-Melanoma Patients Treated with Programmed Cell Death 1 Inhibitors[J]. Oncologist, 2017, 22(10): 1232-1237. doi: 10.1634/theoncologist.2017-0133

    [2]

    Mcgonagle D, Bragazzi NL, Amital H, et al. Mechanistic classification of immune checkpoint inhibitor toxicity as a pointer to minimal treatment strategies to further improve survival[J]. Autoimmun Rev, 2020, 19(2): 102456. doi: 10.1016/j.autrev.2019.102456

    [3]

    Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade[J]. N Engl J Med, 2018, 378(2): 158-168. doi: 10.1056/NEJMra1703481

    [4]

    Thompson JA, Schneider BJ, Brahmer J, et al. Management of Immunotherapy-Related Toxicities, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2019, 17(3): 255-289. doi: 10.6004/jnccn.2019.0013

    [5]

    Naidoo J, Wang X, Woo KM, et al. Pneumonitis in Patients Treated With Anti–Programmed Death-1/Programmed Death Ligand 1 Therapy[J]. J Clin Oncol, 2017, 35(7): 709-717. doi: 10.1200/JCO.2016.68.2005

    [6]

    Roberts J, Ennis D, Hudson M, et al. Rheumatic immune-related adverse events associated with cancer immunotherapy: A nationwide multi-center cohort[J]. Autoimmun Rev, 2020, 19(8): 102595. doi: 10.1016/j.autrev.2020.102595

    [7]

    Michot JM, Lazarovici J, Tieu A, et al. Haematological immune-related adverse events with immune checkpoint inhibitors, how to manage?[J]. Eur J Cancer, 2019, 122: 72-90. doi: 10.1016/j.ejca.2019.07.014

    [8]

    Khan S, Khan SA, Luo X, et al. Immune dysregulation in cancer patients developing immune-related adverse events[J]. Br J Cancer, 2019, 120(1): 63-68. doi: 10.1038/s41416-018-0155-1

    [9]

    Oyanagi J, Koh Y, Sato K, et al. Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab[J]. Lung Cancer, 2019, 132: 107-113. doi: 10.1016/j.lungcan.2019.03.020

    [10]

    Valpione S, Pasquali S, Campana LG, et al. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade[J]. J Transll Med, 2018, 16(1): 94. doi: 10.1186/s12967-018-1467-x

    [11]

    Tanaka R, Okiyama N, Okune M, et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity[J]. J Dermatol Sci, 2017, 86(1): 71-73. doi: 10.1016/j.jdermsci.2016.12.019

    [12]

    Patel SAA, Gooderham NJ. IL6 Mediates Immune and Colorectal Cancer Cell Cross-talk via miR-21 and miR-29b[J]. Mol Cancer Res, 2015, 13(11): 1502-1508. doi: 10.1158/1541-7786.MCR-15-0147

    [13]

    Jeurling S, Cappelli L. Treatment of immune checkpoint inhibitor-induced inflammatory arthritis[J]. Curr Opin Rheumatol, 2020, 32(3): 315-320. doi: 10.1097/BOR.0000000000000701

    [14]

    Tarhini A A, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma[J]. J Immunother Cancer, 2015, 3: 39. doi: 10.1186/s40425-015-0081-1

    [15]

    Kim ST, Bittar M, Kim HJ, et al. Recurrent pseudogout after therapy with immune checkpoint inhibitors: a case report with immunoprofiling of synovial fluid at each flare[J]. J Immunother Cancer, 2019, 7(1): 126. doi: 10.1186/s40425-019-0597-x

    [16]

    Fujimura T, Sato Y, Tanita K, et al. Serum levels of soluble CD163 and CXCL5 may be predictive markers for immune-related adverse events in patients with advanced melanoma treated with nivolumab: a pilot study[J]. Oncotarget, 2018, 9(21): 15542-15551. doi: 10.18632/oncotarget.24509

    [17]

    Schoenfeld JD, Nishino M, Severgnini M, et al. Pneumonitis resulting from radiation and immune checkpoint blockade illustrates characteristic clinical, radiologic and circulating biomarker features[J]. J Immunother Cancer, 2019, 7(1): 112. doi: 10.1186/s40425-019-0583-3

    [18]

    Bridge JA, Lee JC, Daud A, et al. Cytokines, Chemokines, and Other Biomarkers of Response for Checkpoint Inhibitor Therapy in Skin Cancer[J]. Front Med (Lausanne), 2018, 5: 351. http://www.researchgate.net/publication/329594537_Cytokines_Chemokines_and_Other_Biomarkers_of_Response_for_Checkpoint_Inhibitor_Therapy_in_Skin_Cancer

    [19]

    Lim S Y, Lee JH, Gide TN, et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy[J]. Clin Cancer Res, 2019, 25(5): 1557-1563. doi: 10.1158/1078-0432.CCR-18-2795

    [20]

    Osorio JC, Ni A, Chaft JE, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer[J]. Ann Oncol, 2017, 28(3): 583-589. doi: 10.1093/annonc/mdw640

    [21]

    Kimbara S, Fujiwara Y, Iwama S, et al. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab[J]. Cancer Sci, 2018, 109(11): 3583-3590. doi: 10.1111/cas.13800

    [22]

    Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors[J]. Diabetes, 2018, 67(8): 1471-1480. doi: 10.2337/dbi18-0002

    [23]

    Sakakida T, Ishikawa T, Chihara Y, et al. Safety and efficacy of PD-1/PD-L1 blockade in patients with preexisting antinuclear antibodies[J]. Clin Transl Oncol, 2020, 22(6): 919-927. doi: 10.1007/s12094-019-02214-8

    [24]

    Von Itzstein MS, Khan S, Gerber DE. Investigational Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Event Prediction and Diagnosis[J]. Clin Chem, 2020, 66(6): 779-973. doi: 10.1093/clinchem/hvaa081

    [25]

    Ali HO, Bomze D, Ring SS, et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors[J]. J Am Acad Dermatol, 2020, 82(4): 854-861. doi: 10.1016/j.jaad.2019.08.045

    [26]

    Delyon J, Mateus C, Lefeuvre D, et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival[J]. Ann Oncol, 2013, 24(6): 1697-1703. doi: 10.1093/annonc/mdt027

    [27]

    Moreira A, Leisgang W, Schuler G, et al. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy[J]. Immunotherapy, 2017, 9(2): 115-121. doi: 10.2217/imt-2016-0138

    [28]

    Bernard TA, Jeanville P, Champiat S, et al. Immune-related eosinophilia induced by anti-programmed death 1 or death-ligand 1 antibodies[J]. Eur J Cancer, 2017, 81: 135-137. doi: 10.1016/j.ejca.2017.05.017

    [29]

    Kizawa R, Miura Y, Oda Y, et al. Eosinophilia during treatment of immune checkpoint inhibitors (ICIs) predicts succeeding onset of immune-related adverse events(irAEs)[J]. Ann Oncol, 2019, 30, Supp 5: v508. http://www.researchgate.net/publication/336195359_1245PEosinophilia_during_treatment_of_immune_checkpoint_inhibitors_ICIs_predicts_succeeding_onset_of_immune-related_adverse_events_irAEs/download

    [30]

    Nakamura Y, Tanaka R, Maruyama H, et al. Correlation between blood cell count and outcome of melanoma patients treated with anti-PD-1 antibodies[J]. Jpn J Clin Oncol, 2019, 49(5): 431-437. doi: 10.1093/jjco/hyy201

    [31]

    Diehl A, Yarchoan M, Hopkins A, et al. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors[J]. Oncotarget, 2017, 8(69): 114268-114280. doi: 10.18632/oncotarget.23217

    [32]

    Fujisawa Y, Yoshino K, Otsuka A, et al. Fluctuations in routine blood count might signal severe immune-related adverse events in melanoma patients treated with nivolumab[J]. J Dermatol Sci, 2017, 88(2): 225-231. doi: 10.1016/j.jdermsci.2017.07.007

    [33]

    Pavan A, Calvetti L, Dal MA, et al. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors[J]. Oncologist, 2019, 24(8): 1128-1136. doi: 10.1634/theoncologist.2018-0563

    [34]

    Peng L, Wang Y, Liu F, et al. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors[J]. Cancer Immunol Immunother, 2020, 69(9): 1813-1822. doi: 10.1007/s00262-020-02585-w

    [35]

    Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab[J]. Ann Oncol, 2017, 28(6): 1368-1379. doi: 10.1093/annonc/mdx108

    [36]

    Oh DY, Cham J, Zhang L, et al. Immune Toxicities Elicted by CTLA-4 Blockade in Cancer Patients Are Associated with Early Diversification of the T-cell Repertoire[J]. Cancer Res, 2017, 77(6): 1322-1330. doi: 10.1158/0008-5472.CAN-16-2324

    [37]

    Subudhi S K, Aparicio A, Gao J, et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities[J]. Proc Natl Acad Sci U S A, 2016, 113(42): 11919-11924. doi: 10.1073/pnas.1611421113

    [38]

    Ali OH, Berner F, Bomze D, et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors[J]. Eur J Cancer, 2019, 107: 8-14. doi: 10.1016/j.ejca.2018.11.009

    [39]

    Cappelli LC, Dorak MT, Bettinotti MP, et al. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis[J]. Rheumatology (Oxford), 2019, 58(3): 476-480. doi: 10.1093/rheumatology/key358

    [40]

    Munakata W, Ohashi K, Yamaauchi N, et al. Fulminant type I diabetes mellitus associated with nivolumab in a patient with relapsed classical Hodgkin lymphoma[J]. Int J Hematol, 2017, 105(3): 383-386. doi: 10.1007/s12185-016-2101-4

    [41]

    Sakurai K, Niiisuma S, Sato R, et al. Painless Thyroiditis and Fulminant Type 1 Diabetes Mellitus in a Patient Treated with an Immune Checkpoint Inhibitor, Nivolumab[J]. Tohoku J Exp Med, 2018, 244(1): 33-40. doi: 10.1620/tjem.244.33

    [42]

    Queirolo P, Dozin B, Morabito A, et al. CTLA-4 gene variant -1661A > G may predict the onset of endocrine adverse events in metastatic melanoma patients treated with ipilimumab[J]. Eur J Cancer, 2018, 97: 59-61. doi: 10.1016/j.ejca.2018.04.005

    [43]

    Bins S, Basak EA, El Bouazzaoui S, et al. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients[J]. Br J Cancer, 2018, 118(10): 1296-1301. doi: 10.1038/s41416-018-0074-1

    [44]

    Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis[J]. Nat Commun, 2016, 7: 10391. doi: 10.1038/ncomms10391

    [45]

    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota[J]. Proc Natl Acad Sci U S A, 2010, 107(27): 12204-12209. doi: 10.1073/pnas.0909122107

    [46]

    Wang T, Zheng N, Luo Q, et al. Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells[J]. Front Immunol, 2019, 10: 1235. doi: 10.3389/fimmu.2019.01235

    [47]

    Cortellini A, Buti S, Santini D, et al. Clinical Outcomes of Patients with Advanced Cancer and Pre-Existing Autoimmune Diseases Treated with Anti-Programmed Death-1 Immunotherapy: A Real-World Transverse Study[J]. Oncologist, 2019, 24(6): e327-e337. doi: 10.1136/annrheumdis-2018-EWRR2019.9

    [48]

    Khoja L, Day D, Wei WCT, et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review[J]. Ann Oncol, 2017, 28(10): 2377-2385. doi: 10.1093/annonc/mdx286

计量
  • 文章访问数:  2261
  • HTML全文浏览量:  576
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2020-12-09
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回
x 关闭 永久关闭