-
摘要:
大量证据表明,植物性饮食可以显著降低多种恶性肿瘤,尤其是大肠癌的发病率,而油腻饮食和肉食则是肿瘤发病的危险因素。不同的膳食结构直接影响肠道微生物的种类,进而调节肠道微生物代谢产物的生成,从而替机体作出“促癌”或“抑癌”的选择。本文综述了近年来通过饮食因素调控肠道微生态及其代谢产物而影响恶性肿瘤发生、发展、治疗效果及预后的临床证据与机制,为恶性肿瘤的防治提供思路。
Abstract:A large amount of evidence suggest that vegetarian dietary pattern can significantly reduce the incidence of various malignancies, especially colorectal cancer; while high fat diet and meat are the risk factors for cancer. Different dietary structures directly affect the gut microbiota and their metabolites, thus inducing a tumor prone or tumor suppressive effect. In this article, we reviewed the influence of dietary factors on tumor occurrence, development, and therapeutic effect through regulating the gut microbiota and their metabolic products, in order to provide ideas for the prevention and treatment of malignant tumor.
-
Key words:
- Diet /
- Gut microbiota /
- Microbial ecology /
- Malignant tumor
-
作者贡献何俗非:负责文献搜集整理以及部分稿件的撰写; 王邈:负责选题、确定文章架构及部分稿件的撰写
-
[1] Key TJ, Appleby PN, Crowe FL, et al. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32, 491 meat eaters, 8612 fish eaters, 18, 298 vegetarians, and 2246 vegans[J]. Am J Clin Nutr, 2014, 100 Suppl 1: 378S-85S.
[2] Dinu M, Abbate R, Gensini GF, et al. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies[J]. Crit Rev Food Sci Nutr, 2017, 57(17): 3640-9. doi: 10.1080/10408398.2016.1138447
[3] Lippi G, Mattiuzzi C, Cervellin G. Meat consumption and cancer risk: a critical review of published meta-analyses[J]. Crit Rev Oncol Hematol, 2016, 97: 1-14. doi: 10.1016/j.critrevonc.2015.11.008
[4] Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature, 2016, 531(7592): 53-8. doi: 10.1038/nature17173
[5] O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(12): 691-706. doi: 10.1038/nrgastro.2016.165
[6] Rajagopala SV, Yooseph S, Harkins DM, et al. Gastrointestinal microbial populations can distinguish pediatric and adolescent acute lymphoblastic leukemia (ALL) at the time of disease diagnosis[J]. BMC Genomics, 2016, 17(1): 635. doi: 10.1186/s12864-016-2965-y
[7] Fukui H. Improve gut microbiome: a new horizon of cancer therapy[J]. Hepatobiliary Surg Nutr, 2017, 6(6): 424-8. doi: 10.21037/hbsn
[8] Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-5. doi: 10.1038/nature25973
[9] Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian Dietary Patterns and Mortality in Adventist Health Study 2[J]. JAMA Intern Med, 2013, 173(13): 1230-8. doi: 10.1001/jamainternmed.2013.6473
[10] Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian Dietary Patterns and the Risk of Colorectal Cancers[J]. JAMA Intern Med, 2015, 175(5): 767-76. doi: 10.1001/jamainternmed.2015.59
[11] Gianfredi V, Salvatori T, Villarini M, et al. Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis[J]. Int J Food Sci Nutr, 2018, 69(8): 904-15. doi: 10.1080/09637486.2018.1446917
[12] Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies[J]. CancerMed, 2015, 4(12): 1933-47. http://cn.bing.com/academic/profile?id=4ef7bbb5e2e2ed38ac92c56b0a31de47&encoded=0&v=paper_preview&mkt=zh-cn
[13] Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease[J]. Food Funct, 2018, 9(2): 688-704. doi: 10.1039/C7FO01820G
[14] Pant K, Yadav AK, Gupta P, et al. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells[J]. Redox Biol, 2017, 12: 340-9. doi: 10.1016/j.redox.2017.03.006
[15] Perego S, Sansoni V, Banfi G, et al. Sodium butyrate has anti-proliferative, pro-differentiating, and immunomodulatory effects in osteosarcoma cells and counteracts the TNFα-induced low-grade inflammation[J]. Int J Immunopathol Pharmacol, 2018, 32: 394632017752240.
[16] Encarnação JC, Abrantes AM, Pires AS, et al. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment[J]. Cancer Metastasis Rev, 2015, 34(3): 465-78. doi: 10.1007/s10555-015-9578-9
[17] Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-73. doi: 10.1126/science.1241165
[18] Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi: 10.1080/19490976.2015.1134082
[19] Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics[J]. J Clin Gastroenterol, 2011, 45 Suppl:S120-7.
[20] O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J]. Nat Commun, 2015, 6: 6342. doi: 10.1038/ncomms7342
[21] Balaban S, Lee LS, Schreuder M, et al. Obesity and cancer progression: is there a role of fatty acid metabolism?[J]. Biomed Res Int, 2015, 2015: 274585. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3446260
[22] Tomas J, Mulet C, Saffarian A, et al. High-fat diet modifies the PPAR-gamma pathway leading to disruption of microbial and physiological ecosystem in murine small intestine[J].Proc Natl Acad Sci U S A, 2016, 113(40): E5934-43. doi: 10.1073/pnas.1612559113
[23] Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides[J]. J Lipid Res, 2009, 50(1): 90-7. doi: 10.1194/jlr.M800156-JLR200
[24] Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]. Cancer Cell, 2012, 21(4): 504-16. doi: 10.1016/j.ccr.2012.02.007
[25] Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-24. http://cn.bing.com/academic/profile?id=7385e8e7f7f2a1ec05980332a18eca82&encoded=0&v=paper_preview&mkt=zh-cn
[26] Wahlström A, Sayin SI, Marschall HU, et al. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism[J]. Cell Metab, 2016, 24(1): 41-50. doi: 10.1016/j.cmet.2016.05.005
[27] Phelan JP, Reen FJ, Caparros-Martin JA, et al. Rethinking the bile acid/gut microbiome axis in cancer[J]. Oncotarget, 2017, 8(70): 115736-47. http://cn.bing.com/academic/profile?id=fe897422d62b5a8b8e76b4d0f07bb4aa&encoded=0&v=paper_preview&mkt=zh-cn
[28] Beaney AJ, Banim PJR, Luben R, et al. Higher Meat Intake Is Positively Associated With Higher Risk of Developing Pancreatic Cancer in an Age-Dependent Manner and Are Modified by Plasma Antioxidants: A Prospective Cohort Study (EPIC-Norfolk) Using Data From Food Diaries[J]. Pancreas, 2017, 46(5): 672-8. doi: 10.1097/MPA.0000000000000819
[29] Wu K, Spiegelman D, Hou T, et al. Associations between unprocessed red and processed meat, poultry, seafood and egg intake and the risk of prostate cancer: A pooled analysis of 15 prospective cohort studies[J]. Int J Cancer, 2016, 138(10): 2368-82. doi: 10.1002/ijc.29973
[30] Cascella M, Bimonte S, Barbieri A, et al. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge[J]. Infect Agent Cancer, 2018, 13:3. doi: 10.1186/s13027-018-0174-9
[31] Wolk A. Potential health hazards of eating red meat[J]. J Intern Med, 2017, 281(2): 106-22. doi: 10.1111/joim.2017.281.issue-2
[32] Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations[J]. Nutrition, 2015, 31(11-12): 1317-23. doi: 10.1016/j.nut.2015.05.006
[33] Xu R, Wang Q, Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat[J]. BMC Genomics, 2015, 16 Suppl 7: S4.
[34] Oellgaard J, Winther SA, Hansen TS, et al. Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer[J]. Curr Pharm Des, 2017, 23(25): 3699-712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d02d163a2887893e673b23751446f5e7
[35] Romano KA, Martinez-Del Campo A, Kasahara K, et al. Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption[J]. Cell Host Microbe, 2017, 22(3): 279-90. doi: 10.1016/j.chom.2017.07.021
[36] Paul B, Barnes S, Demark-Wahnefried W, et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases[J]. Clin Epigenetics, 2015, 7: 112. doi: 10.1186/s13148-015-0144-7
[37] Korpela K. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation[J]. Annu Rev Food Sci Technol, 2018, 9: 65-84. doi: 10.1146/annurev-food-030117-012830
[38] Zhu Y, Wang PP, Zhao J, et al. Dietary N-nitroso compounds and risk of colorectal cancer: a case-control study in Newfoundland and Labrador and Ontario, Canada[J]. Br J Nutr, 2014, 111(6): 1109-17. doi: 10.1017/S0007114513003462
[39] Attene-Ramos MS, Wagner ED, Plewa MJ, et al. Evidence that hydrogen sulfide is a genotoxic agent[J]. Mol Cancer Res, 2006, 4(1): 9-14. doi: 10.1158/1541-7786.MCR-05-0126
[40] Windey K, De Preter V, Louat T, et al. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects[J]. PLoS One, 2012, 7(12): e52387. doi: 10.1371/journal.pone.0052387
[41] Jochems SHJ, Van Osch FHM, Bryan RT, et al. Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: a systematic review of current epidemiological literature[J]. BMJ Open, 2018, 8(2): e014530. doi: 10.1136/bmjopen-2016-014530
[42] Mehra K, Berkowitz A, Sanft T. Diet, Physical Activity, and Body Weight in Cancer Survivorship[J]. Med Clin North Am, 2017, 101(6): 1151-65. doi: 10.1016/j.mcna.2017.06.004
[43] Geuking MB, Köller Y, Rupp S, et al. The interplay between the gut microbiota and the immune system[J]. Gut Microbes, 2014, 5(3):411-8. doi: 10.4161/gmic.29330
[44] Sears CL, Pardoll DM. The intestinal microbiome influences checkpoint blockade[J]. Nat Med, 2018, 24(3): 254-5. doi: 10.1038/nm.4511
[45] Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling[J]. J Clin Invest, 2007, 117(8): 2197-204. doi: 10.1172/JCI32205
[46] Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-84. doi: 10.1126/science.aad1329
[47] Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-7. doi: 10.1126/science.aan3706
[48] Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-9. doi: 10.1126/science.aac4255
[49] Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice[J]. Gut, 2015, 64(6): 872-83. doi: 10.1136/gutjnl-2014-307142
[50] Roopchand DE, Carmody RN, Kuhn P, et al. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome[J]. Diabetes, 2015, 64(8): 2847-58. doi: 10.2337/db14-1916
[51] Dueñas M, Muñoz-González I, Cueva C, et al. A survey of modulation of gut microbiota by dietary polyphenols[J]. Biomed Res Int, 2015, 2015: 850902. http://cn.bing.com/academic/profile?id=6a7911ebc597633ddd46dae3dcde0c11&encoded=0&v=paper_preview&mkt=zh-cn
[52] Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide[J]. Science, 2013, 342(6161): 971-6. doi: 10.1126/science.1240537
[53] Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-70. doi: 10.1126/science.1240527
计量
- 文章访问数: 1799
- HTML全文浏览量: 552
- PDF下载量: 570