高级搜索

核仁小分子RNAs与癌症的研究进展

丁翠玲, 王鹏, 王文

丁翠玲, 王鹏, 王文. 核仁小分子RNAs与癌症的研究进展[J]. 肿瘤防治研究, 2015, 42(01): 86-89. DOI: 10.3971/j.issn.1000-8578.2015.01.021
引用本文: 丁翠玲, 王鹏, 王文. 核仁小分子RNAs与癌症的研究进展[J]. 肿瘤防治研究, 2015, 42(01): 86-89. DOI: 10.3971/j.issn.1000-8578.2015.01.021
DING Cuiling, WANG Peng, WANG Wen. Recent Progress in Small Nucleolar RNAs and Cancer[J]. Cancer Research on Prevention and Treatment, 2015, 42(01): 86-89. DOI: 10.3971/j.issn.1000-8578.2015.01.021
Citation: DING Cuiling, WANG Peng, WANG Wen. Recent Progress in Small Nucleolar RNAs and Cancer[J]. Cancer Research on Prevention and Treatment, 2015, 42(01): 86-89. DOI: 10.3971/j.issn.1000-8578.2015.01.021

核仁小分子RNAs与癌症的研究进展

详细信息
    作者简介:

    丁翠玲(1990-), 女, 硕士在读, 主要从事肝细胞癌生物标志物的相关研究

  • 中图分类号: R730.2

Recent Progress in Small Nucleolar RNAs and Cancer

  • 摘要: 核仁小分子RNAs (small nucleolar RNAs, snoRNAs) 是一类小分子非编码RNA,其广泛分布于真核生物的细胞核核仁中。近年来,越来越多的研究证明snoRNAs的失调与癌症相关。snoRNAs可能作为抑制基因或原癌基因参与到癌症发生与发展的过程中。并且,snoRNAs相关的基因印记、人端粒末端转移酶以及核糖体病变也被发现与癌症的发生有关。另外,snoRNAs在癌症的诊断与治疗中具有潜在的应用。本文简要总结了snoRNAs的新功能以及snoRNAs在癌症诊断与治疗中潜在应用的研究进展。
    Abstract: Small nucleolar RNAs(snoRNAs) is one kind of small non-coding RNAs, which is widely distributed in the nucleoli of eukaryotic nucleus. In recent years, more and more studies have proved that disorders of snoRNAs are related to cancer. snoRNAs may be involved in the occurrence and development of cancer, as suppressor genes or proto-oncogenes. Besides, snoRNAs-related imprinting genes, human telomerase and ribosomopathies could consequently contribute to carcinogenesis. In addition, snoRNAs have potential application in the diagnosis and therapy of cancer. This article briefly reviews recent research progress in the features of snoRNAs and their potential application in cancer diagnosis and therapy.
  • [1] Croce CM. Oncogenes and cancer[J]. N Engl J Med, 2008, 358(5): 50 2-11.
    [2] Stein LD. Human genome: end of the beginning[J]. Nature, 2004, 43 1(7011): 915-6.
    [3] Pennisi E. Human genome. A low number wins the GeneSweep Pool[J]. Science, 2003, 300(5625): 1484.
    [4] Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution[J]. Science, 2005, 30 8(5725): 1149-54.
    [5] Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 20 06, 15 Spec No 1: R17-29.
    [6] Taft RJ, Pang KC, Mercer TR, et al. Non-coding RNAs: regulators of disease[J]. J Pathol, 2010, 220 (2): 126-39.
    [7] Will CL, Luhrmann R, Cech R, et al. The RNA World[M].3rd edition. Long island, New York, USA. Cold Spring Harbor Laboratory Press, 2006: 369-400.
    [8] Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer[J]. Biochim Biophys Acta, 2012, 1826(1): 121-8.
    [9] Gardner PP, Bateman A, Poole AM. SnoPatrol: how many snoRNAs genes are there?[J]. J Biol, 2010, 9(1): 4.
    [10] Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin[J]. Gene Expr, 2002, 10 (1-2) : 17-39.
    [11] Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs [J]. Cell, 1997, 89(5): 669-72.
    [12] Bortolin ML, Kiss T. Human U19 intron-encoded snoRNAs is processed from a long primary transcript that possesses little potential for protein coding[J]. RNA, 1998, 4(4): 445-54.
    [13] Zhang YC, Zhou H, Qu LH. Structure and function of snoRNAs[J]. Sheng Ming Ke Xue, 2008, 20(2): 171-7.[ 张筱晨, 周惠, 屈良鹄. snoRNA的结构与功能[J]. 生命科学, 2008, 20(2): 171-7.]
    [14] Chang LS, Lin SY, Lieu AS, et al. Differential expression of human 5S snoRNAs genes[J]. Biochem Biophys Res Commun, 20 02, 299(2): 196-200.
    [15] Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C[J]. Science, 2006, 311(5758): 23 0-2.
    [16] Dong XY, Rodriguez C, Guo P, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer[J]. Hum Mol Genet, 2008, 17 (7): 1031-42.
    [17] Dong XY, Guo P, Boyd J, et al. Implication of snoRNAs U50 in human breast cancer [J]. J Genet Genomics, 2009, 36(8): 447-54.
    [18] Pacilli A, Ceccarelli C,Treré D, et al. SnoRNA U50 levels are regulated by cell proliferation and rRNA transcription[J]. Int J Mol Sci, 2013, 14(7): 14923-35.
    [19] Mei YP, Liao JP, Shen J, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis[J]. Oncogene, 2012, 31(22): 27 94-804.
    [20] Liao J, Yu L, Mei Y, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer[J]. Mol Cancer, 2010, 9: 198.
    [21] Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma[J]. Science, 2007, 317(5837): 477.
    [22] Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis[J]. Int J Cancer, 2011, 129(4): 77 3-9.
    [23] Ko JM, Yau WL, Chan PL, et al. Functional evidence of decreased tumorigenicity associated with monochromosome transfer of chromosome 14 in esophageal cancer and the mapping of tumorsuppressive regions to 14q32[J]. Genes Chromosomes Cancer, 20 05, 43 (3): 284-93.
    [24] Feng J, Funk WD, Wang S, et al. The RNA component of human telomerase[J]. Science, 1995, 269(5228): 1236-41.
    [25] Trahan C, Dragon F. Dyskeratosis congenita mutations in the H/ ACA domain of human telomerase RNA affect its assembly into a pre-RNP[J]. RNA, 2009, 15(2): 235-43.
    [26] Sieron P, Hader C, Hatina J, et al. DKC1 overexpression associated with prostate cancer progression[J]. Br J Cancer, 2009, 10 1(8): 1410-6.
    [27] Montanaro L, Bigotti M, Clohessy J, et al. Dyskerin expression in?uences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer[J]. J Pathol, 20 06, 210(1): 10-8.
    [28] Cui Z, DiMario PJ. RNAi knockdown of Nopp 140 induces Minute-like phenotypes in Drosophila[J]. Mol Biol Cell, 2007, 18 (6): 2179-91.
    [29] Isaac C, Marsh KL, Paznekas WA, et al. Characterization of the nucleoli gene product, treacle, in Treacher Collins syndrome [J]. Mol Biol Cell, 2000, 11(9): 3061-71.
    [30] Su H, Xu T, Ganapathy S, et al. Elevated snoRNA biogenesis is essential in breast cancer[J]. Oncogene, 2014, 33(11): 1348-58.
    [31] Nallar SC, Kalvakolanu DV. Regulation of snoRNAs in cancer: close encounters with interferon[J]. J Interferon Cytokine Res, 20 13, 33(4): 189-98.
    [32] Nakamoto K, Ito A, Watabe K, et al. Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function [J]. Am J Pathol, 2001, 159 (4): 1363-74.
    [33] Michel CI, Holley CL, Scruggs BS, et al. Small nucleolar RNAs U32a, U33 and U35a are critical mediators of metabolic stress [J]. Cell Metab, 2011, 14 (1): 33-44.
    [34] Mourtada-Maarabouni M, Pickard MR, Hedge VL, et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer[J]. Oncogene, 2009, 28(2): 195-208.
    [35] Williams GT,Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer?[J]. Nat Rev Cancer, 2012, 12(2): 84-8.
    [36] Askarian-Amiri ME, Crawford J, French JD, et al. SNORDhost RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer[J]. RNA, 2011, 17(5): 878-91.
    [37] Gee HE, Buffa FM, Camps C, et al. The small-nucleolar RNAs commonly used for microRNA normalization correlate with tumor pathology and prognosis[J]. Br J Cancer, 2011, 104(7): 1168-77.
计量
  • 文章访问数:  1949
  • HTML全文浏览量:  542
  • PDF下载量:  1221
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-29
  • 修回日期:  2014-03-12
  • 刊出日期:  2015-01-24

目录

    WANG Wen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回
    x 关闭 永久关闭