[1] |
Marks LB. The impact of organ structure on radiation response[J]. Int J Radiat Oncol Biol Phys, 1996, 34(5):1165-71.
|
[2] |
Gondi V, Hermann BP, Mehta MP, et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors[J]. Int J Radiat Oncol Biol Phys,2012, 83(4): e487-93.
|
[3] |
Christianen ME, Langendijk JA, Westerlaan HE, et al. Delineation of organs at risk involved in swallowing for radiotherapy treatment planning[J]. Radiother Oncol, 2011, 101(3): 394-402.
|
[4] |
Tan W, Liu D, Xue C, et al. Anterior myocardial territory may replace the heart as organ at risk in intensity-modulated radiotherapy for left-sided breast cancer[J]. Int J Radiat Oncol Biol Phys,2012, 82(5):1689-97.
|
[5] |
Seppenwoolde Y, De Jaeger K, Boersma LJ, et al. Regional differences in lung radiosensitivity after radiotherapy for nonsmall- cell lung cancer[J]. Int J Radiat Oncol Biol Phys,2004, 60 (3):748-58.
|
[6] |
Moore KL, Brame RS, Low DA, et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2): 545-51.
|
[7] |
Kim Y, Tome WA. Is it beneficial to selectively boost high-risk tumor subvolumes? A comparison of selectively boosting highrisk tumor subvolumes versus homogeneous dose escalation of the entire tumor based on equivalent EUD plans[J]. Acta Oncol, 20 08, 47(5): 906-16.
|
[8] |
Tan J, Lim Joon D, Fitt G, et al. The utility of multimodality imaging with CT and MRI in defi ning rectal tumour volumes for radiotherapy treatment planning: a pilot study[J]. J Med Imaging Radiat Oncol,2010,54(6):562-8.
|
[9] |
Yu XL, Zhang Q, Chen JY, et al. Delineation of the cardiac substructures based on PET-CT and contrast-enhanced CT in patients with left breast cancer treated with postoperative radiotherapy[J]. Technol Cancer Res Treat,2013,12(2):99-107.
|
[10] |
Barani IJ, Benedict SH, Lin PS. Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies[J]. Int J Radiat Oncol Biol Phys,2007,68(2):324-33.
|
[11] |
Achanta P, Capilla-Gonzalez V, Purger D, et al. Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts[J]. Stem Cells,2012,30(11):2548-60.
|
[12] |
Chen L, Guerrero-Cazares H, Ye X, et al. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection[J]. Int J Radiat Oncol Biol Phys, 2013, 86(4):616-22.
|
[13] |
Evers P, Lee PP, DeMarco J, et al. Irradiation of the potential cancer stem cell niches in the adult brain improves progressionfree survival of patients with malignant glioma[J]. BMC Cancer, 20 10,10, 384.
|
[14] |
Marsh JC, Godbole R, Diaz AZ, et al. Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: a dosimetric feasibility study[J]. J Med Imaging Radiat Oncol, 2011,55(4): 442-9.
|
[15] |
Franco P, Numico G, Migliaccio F, et al. Head and neck region consolidation radiotherapy and prophylactic cranial irradiation with hippocampal avoidance delivered with helical tomotherapy after induction chemotherapy for non-sinonasal neuroendocrine carcinoma of the upper airways[J]. Radiat Oncol, 2012,7:21.
|
[16] |
Gondi V, Tolakanahalli R, Mehta MP,et al.Hippocampalsparing whole-brain radiotherapy: a "how-to" technique using helical tomotherapy and linear accelerator-based intensitymodulated radiotherapy[J]. Int J Radiat Oncol Biol Phys,2010, 78 (4):1244-52.
|
[17] |
van Kesteren Z, Belderbos J, van Herk M, et al. A practical technique to avoid the hippocampus in prophylactic cranial irradiation for lung cancer[J]. Radiother Oncol, 2012, 102(2): 22 5-7.
|
[18] |
Padovani L, André N, Constine LS, et al. Neurocognitive function after radiotherapy for paediatric brain tumours[J]. Nat Rev Neurol,2012, 8(10): 578-88.
|
[19] |
Blomstrand M, Brodin NP, Munck Af Rosenschöld P, et al. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma[J]. Neuro Oncol,2012, 14(7): 882-9.
|
[20] |
Chera BS, Amdur RJ, Patel P, et al. A radiation oncologist’s guide to contouring the hippocampus[J]. Am J Clin Oncol, 2009, 32(1): 20-2.
|
[21] |
Bijl HP, van Luijk P, Coppes RP, et al. Regional differences in radiosensitivity across the rat cervical spinal cord[J]. Int J Radiat Oncol Biol Phys, 2005, 61(2): 543-51.
|
[22] |
Uh J, Merchant TE, Li Y, et al. Differences in brainstem fiber tract response to radiation: a longitudinal diffusion tensor imaging study[J]. Int J Radiat Oncol Biol Phys, 2013, 86(2):292-7.
|
[23] |
Ciura K, Mcburney M, Nguyen B, et al. Effect of brain stem and dorsal vagus complex dosimetry on nausea and vomiting in head and neck intensity-modulated radiation therapy[J]. Med Dosim, 20 11,36(1): 41-5.
|
[24] |
Monroe AT, Reddy SC, Gibbs GL, et al. Factors associated with radiation-induced nausea and vomiting in head and neck cancer patients treated with intensity modulated radiation therapy[J]. Radiother Oncol, 2008, 87(2): 188-94.
|
[25] |
Lee VH, Ng SC, Leung TW, et al. Dosimetric predictors of radiation-induced acute nausea and vomiting in IMRT for nasopharyngeal cancer[J]. Int J Radiat Oncol Biol Phys,2012,84(1): 176-82.
|
[26] |
O’Sullivan B, Rumble RB, Warde P, et al. Intensity-modulated radiotherapy in the treatment of head and neck cancer[J]. Clin Oncol (R Coll Radiol), 2012, 24(7): 474-87.
|
[27] |
Lee AW, Lin JC, Ng WT. Current management of nasopharyngeal cancer[J]. Semin Radiat Oncol, 2012, 22(3): 233-44.
|
[28] |
Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer[J]. Lancet Oncol, 2010,11(1): 85-91.
|
[29] |
Wang X, Hu C, Eisbruch A. Organ-sparing radiation therapy for head and neck cancer[J]. Nat Rev Clin Oncol, 2011,8(11): 639-48.
|
[30] |
van de Water TA, Bijl HP, Westerlaan HE, et al. Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia[J]. Radiother Oncol, 2009,93(3): 54 5-52.
|
[31] |
Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2008, 72 (5):1362-7.
|
[32] |
Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic[J]. Int J Radiat Oncol Biol Phys,2010,76(3 Suppl):S10-9.
|
[33] |
van der Laan HP, Gawryszuk A, Christianen ME, et al. Swallowing-sparing intensity-modulated radiotherapy for head and neck cancer patients: treatment planning optimization and clinical introduction[J]. Radiother Oncol, 2013, 107(3):282-7.
|
[34] |
Paleri V, Roe JW, Strojan P, et al. Strategies to reduce longterm postchemoradiation dysphagia in patients with head and neck cancer: an evidence-based review[J]. Head Neck, 20 13,36(3):431-43.
|
[35] |
De Ruyck K, Duprez F, Werbrouck J, et al. A predictive model for dysphagia following IMRT for head and neck cancer: introduction of the EMLasso technique[J]. Radiother Oncol, 2013, 10 7(3):295-9.
|
[36] |
Amin N, Reddy K, Westerly D, et al. Sparing the larynx and esophageal inlet expedites feeding tube removal in patients with stage III-IV oropharyngeal squamous cell carcinoma treated with intensity-modulated radiotherapy[J]. Laryngoscope, 2012, 12 2(12): 2736-42.
|
[37] |
Christianen ME, Schilstra C, Beetz I, et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study[J]. Radiother Oncol, 20 12,105(1):107-14.
|
[38] |
Schwartz DL, Hutcheson K, Barringer D, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2010, 78(5):1356-65.
|
[39] |
Mortensen HR, Jensen K, Aksglaede K, et al. Late dysphagia after IMRT for head and neck cancer and correlation with dose-volume parameters[J]. Radiother Oncol, 2013, 107(3):288-94.
|
[40] |
Jellema AP, Doornaert P, Slotman BJ, et al. Does radiation dose to the salivary glands and oral cavity predict patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with curative radiotherapy?[J]. Radiother Oncol, 2005,77(2):164-71.
|
[41] |
van Luijk P, Faber H, Schippers JM, et al. Bath and shower effects in the rat parotid gland explain increased relative risk of parotid gland dysfunction after intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys,2009,74(4):1002-5.
|
[42] |
Hope AJ,Lindsay PE,El Naqa I,et al. Modeling radiation pneumonitis risk with clinical,dosimetric,and spatial parameters[J]. Int J Radiat Oncol Biol Phys,2006,65(1):112-24.
|
[43] |
Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer:pulmonary function,prediction,and prevention[J]. Int J Radiat Oncol Biol Phys,2005,63(1):5-24.
|
[44] |
Tucker SL,Liao ZX,Travis EL.Estimation of the spatial distribution of target cells for radiation pneumonitis in mouse lung[J]. Int J Radiat Oncol Biol Phys,1997,38(5):1055-66.
|
[45] |
Travis EL,Liao ZX,Tucker SL.Spatial heterogeneity of the volume effect for radiation pneumonitis in mouse lung[J].Int J Radiat Oncol Biol Phys,1997,38(5):1045-54.
|
[46] |
Yorke ED,Jackson A,Rosenzweig KE,et al.Correlation of dosimetric factors and radiation pneumonitis for non-smallcell lung cancer patients in a recently completed dose escalation study[J].Int J Radiat Oncol Biol Phys,2005,63(3):672-82.
|
[47] |
Vinogradskiy Y,Tucker SL,Liao Z,et al. Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients[J]. Int J Radiat Oncol Biol Phys,2012,82(5): 16 50-8.
|
[48] |
Vogelius IR, Bentzen SM. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis[J]. Acta Oncol,2012,51(8):975-83.
|
[49] |
Lo SS, Fakiris AJ, Chang EL, et al. Stereotactic body radiation therapy: a novel treatment modality[J]. Nat Rev Clin Oncol, 20 10,7(1):44-54.
|
[50] |
Nyman J, Johansson KA, Hultén U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer--mature results for medically inoperable patients[J]. Lung Cancer,2006,51(1): 97 -103.
|
[51] |
Milano MT, Constine LS, Okunieff P. Normal tissue toxicity after small fi eld hypofractionated stereotactic body radiation[J].Radiat Oncol,2008,3:36.
|
[52] |
Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus[J]. Int J Radiat Oncol Biol Phys, 2011,81(5): 1442-57.
|
[53] |
Darby SC, Cutter DJ, Boerma M, et al. Radiation-related heart disease: current knowledge and future prospects[J].Int J Radiat Oncol Biol Phys,2010,76(3):656-65.
|
[54] |
Darby SC,McGale P,Taylor CW,et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries[J]. Lancet Oncol,2005,6(8):557-65.
|
[55] |
Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J]. N Engl J Med, 2013, 368(11): 987-98.
|
[56] |
Tjessem KH, Johansen S, Malinen E, et al. Long-term cardiac mortality after hypofractionated radiation therapy in breast cancer[J]. Int J Radiat Oncol Biol Phys, 2013, 87(2):337-43.
|
[57] |
Hodgson DC. Late effects in the era of modern therapy for Hodgkin lymphoma[J].Hematology Am Soc Hematol. Educ Program,2011, 2011: 323-9.
|
[58] |
Nilsson G, Holmberg L, Garmo H, et al. Distribution of coronary artery stenosis after radiation for breast cancer[J]. J Clin Oncol, 20 12, 30(4): 380-6.
|
[59] |
Offersen B, Højris I, Overgaard M. Radiation-induced heart morbidity after adjuvant radiotherapy of early breast cancer - Is it still an issue? [J] Radiother Oncol, 2011, 100(2): 157-9.
|
[60] |
Gay HA, Barthold HJ, O’Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas[J]. Int J Radiat Oncol Biol Phys, 2012,83(3): e353-62.
|
[61] |
Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S101-7.
|
[62] |
Viswanathan AN, Yorke ED, Marks LB, et al. Radiation dosevolume effects of the urinary bladder[J]. Int J Radiat Oncol Biol Phys, 2010,76(3 Suppl): S116-22.
|
[63] |
Michalski JM, Gay H, Jackson A, et al. Radiation dose-volume effects in radiation-induced rectal injury[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S123-9.
|
[64] |
Butterworth KT, McGarry CK, Trainor C, et al. Dose, doserate and fi eld size effects on cell survival following exposure to non-uniform radiation fields[J]. Phys Med Biol, 2012, 57(10): 31 97-206.
|
[65] |
Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy[J]. Nat Rev Cancer, 2009, 9(5): 351-60.
|
[66] |
Formenti SC, Demaria S. Systemic effects of local radiotherapy[J]. Lancet Oncol , 2009, 10(7): 718-26.
|