高级搜索

放疗期间危及器官中的亚结构保护新策略

李俊玉, 李 莹, 谭文勇

李俊玉, 李 莹, 谭文勇. 放疗期间危及器官中的亚结构保护新策略[J]. 肿瘤防治研究, 2014, 41(05): 482-487. DOI: 10.3971/j.issn.1000-8578.2014.05.032
引用本文: 李俊玉, 李 莹, 谭文勇. 放疗期间危及器官中的亚结构保护新策略[J]. 肿瘤防治研究, 2014, 41(05): 482-487. DOI: 10.3971/j.issn.1000-8578.2014.05.032
LI Junyu, LI Ying, TAN Wenyong. Novel Strategy for Sparing Substructures in Organs at Risk during Radiation Therapy[J]. Cancer Research on Prevention and Treatment, 2014, 41(05): 482-487. DOI: 10.3971/j.issn.1000-8578.2014.05.032
Citation: LI Junyu, LI Ying, TAN Wenyong. Novel Strategy for Sparing Substructures in Organs at Risk during Radiation Therapy[J]. Cancer Research on Prevention and Treatment, 2014, 41(05): 482-487. DOI: 10.3971/j.issn.1000-8578.2014.05.032

放疗期间危及器官中的亚结构保护新策略

基金项目: 湖北自然科学基金资助课题(2013CFB059)
详细信息
    作者简介:

    李俊玉(1988-),男,博士,主要从事放射肿瘤学相关研究

    通信作者:

    谭文勇,E-mail:tanwyym@hotmail.com

  • 中图分类号: R730.55

Novel Strategy for Sparing Substructures in Organs at Risk during Radiation Therapy

  • 摘要: 在放疗中正常组织器官各个部位的功能和放疗反应性不同,其空间异质性未得到充分考虑;随着影像学、放疗技术和放射生物学的进步,调强放疗技术可以更好保护危及器官中的重要结构。本文着重分析在调强放疗中保护分析部分重要结构的可行性,这些重要结构包括:大脑中重要功能区域、神经核团、神经纤维束;放疗相关唾液腺、吞咽功能障碍相关的头颈部结构;心脏、肺部的重要解剖结构。在调强放疗中对重要解剖功能区进行定义并设定适当的剂量体积参数进行优化,可达到在不牺牲靶区剂量的前提下更好的保护危及器官。

     

    Abstract: During radiotherapy, for a single organ, the anatomical and spatial heterogeneity to radiation response is usually not taken into consideration. With the development of imaging, radiation techniques and radiobiology, intensity-modulated radiotherapy may spare functional substructures in the organs. In this review, various critical functional structures were addressed and these functional substructures including the critical brain structure, neural nuclei and nerve fi ber tracts in the central nervous system, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional substructures in lung and heart. During intensity-modulated radiotherapy, the dose-volume constraints could be set individually to minimize the radiation dose and(or) irradiated volume of various substructures without compromising the dose coverage to target volume.

     

  • [1] Marks LB. The impact of organ structure on radiation response[J]. Int J Radiat Oncol Biol Phys, 1996, 34(5):1165-71.
    [2] Gondi V, Hermann BP, Mehta MP, et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors[J]. Int J Radiat Oncol Biol Phys,2012, 83(4): e487-93.
    [3] Christianen ME, Langendijk JA, Westerlaan HE, et al. Delineation of organs at risk involved in swallowing for radiotherapy treatment planning[J]. Radiother Oncol, 2011, 101(3): 394-402.
    [4] Tan W, Liu D, Xue C, et al. Anterior myocardial territory may replace the heart as organ at risk in intensity-modulated radiotherapy for left-sided breast cancer[J]. Int J Radiat Oncol Biol Phys,2012, 82(5):1689-97.
    [5] Seppenwoolde Y, De Jaeger K, Boersma LJ, et al. Regional differences in lung radiosensitivity after radiotherapy for nonsmall- cell lung cancer[J]. Int J Radiat Oncol Biol Phys,2004, 60 (3):748-58.
    [6] Moore KL, Brame RS, Low DA, et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2): 545-51.
    [7] Kim Y, Tome WA. Is it beneficial to selectively boost high-risk tumor subvolumes? A comparison of selectively boosting highrisk tumor subvolumes versus homogeneous dose escalation of the entire tumor based on equivalent EUD plans[J]. Acta Oncol, 20 08, 47(5): 906-16.
    [8] Tan J, Lim Joon D, Fitt G, et al. The utility of multimodality imaging with CT and MRI in defi ning rectal tumour volumes for radiotherapy treatment planning: a pilot study[J]. J Med Imaging Radiat Oncol,2010,54(6):562-8.
    [9] Yu XL, Zhang Q, Chen JY, et al. Delineation of the cardiac substructures based on PET-CT and contrast-enhanced CT in patients with left breast cancer treated with postoperative radiotherapy[J]. Technol Cancer Res Treat,2013,12(2):99-107.
    [10] Barani IJ, Benedict SH, Lin PS. Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies[J]. Int J Radiat Oncol Biol Phys,2007,68(2):324-33.
    [11] Achanta P, Capilla-Gonzalez V, Purger D, et al. Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts[J]. Stem Cells,2012,30(11):2548-60.
    [12] Chen L, Guerrero-Cazares H, Ye X, et al. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection[J]. Int J Radiat Oncol Biol Phys, 2013, 86(4):616-22.
    [13] Evers P, Lee PP, DeMarco J, et al. Irradiation of the potential cancer stem cell niches in the adult brain improves progressionfree survival of patients with malignant glioma[J]. BMC Cancer, 20 10,10, 384.
    [14] Marsh JC, Godbole R, Diaz AZ, et al. Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: a dosimetric feasibility study[J]. J Med Imaging Radiat Oncol, 2011,55(4): 442-9.
    [15] Franco P, Numico G, Migliaccio F, et al. Head and neck region consolidation radiotherapy and prophylactic cranial irradiation with hippocampal avoidance delivered with helical tomotherapy after induction chemotherapy for non-sinonasal neuroendocrine carcinoma of the upper airways[J]. Radiat Oncol, 2012,7:21.
    [16] Gondi V, Tolakanahalli R, Mehta MP,et al.Hippocampalsparing whole-brain radiotherapy: a "how-to" technique using helical tomotherapy and linear accelerator-based intensitymodulated radiotherapy[J]. Int J Radiat Oncol Biol Phys,2010, 78 (4):1244-52.
    [17] van Kesteren Z, Belderbos J, van Herk M, et al. A practical technique to avoid the hippocampus in prophylactic cranial irradiation for lung cancer[J]. Radiother Oncol, 2012, 102(2): 22 5-7.
    [18] Padovani L, André N, Constine LS, et al. Neurocognitive function after radiotherapy for paediatric brain tumours[J]. Nat Rev Neurol,2012, 8(10): 578-88.
    [19] Blomstrand M, Brodin NP, Munck Af Rosenschöld P, et al. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma[J]. Neuro Oncol,2012, 14(7): 882-9.
    [20] Chera BS, Amdur RJ, Patel P, et al. A radiation oncologist’s guide to contouring the hippocampus[J]. Am J Clin Oncol, 2009, 32(1): 20-2.
    [21] Bijl HP, van Luijk P, Coppes RP, et al. Regional differences in radiosensitivity across the rat cervical spinal cord[J]. Int J Radiat Oncol Biol Phys, 2005, 61(2): 543-51.
    [22] Uh J, Merchant TE, Li Y, et al. Differences in brainstem fiber tract response to radiation: a longitudinal diffusion tensor imaging study[J]. Int J Radiat Oncol Biol Phys, 2013, 86(2):292-7.
    [23] Ciura K, Mcburney M, Nguyen B, et al. Effect of brain stem and dorsal vagus complex dosimetry on nausea and vomiting in head and neck intensity-modulated radiation therapy[J]. Med Dosim, 20 11,36(1): 41-5.
    [24] Monroe AT, Reddy SC, Gibbs GL, et al. Factors associated with radiation-induced nausea and vomiting in head and neck cancer patients treated with intensity modulated radiation therapy[J]. Radiother Oncol, 2008, 87(2): 188-94.
    [25] Lee VH, Ng SC, Leung TW, et al. Dosimetric predictors of radiation-induced acute nausea and vomiting in IMRT for nasopharyngeal cancer[J]. Int J Radiat Oncol Biol Phys,2012,84(1): 176-82.
    [26] O’Sullivan B, Rumble RB, Warde P, et al. Intensity-modulated radiotherapy in the treatment of head and neck cancer[J]. Clin Oncol (R Coll Radiol), 2012, 24(7): 474-87.
    [27] Lee AW, Lin JC, Ng WT. Current management of nasopharyngeal cancer[J]. Semin Radiat Oncol, 2012, 22(3): 233-44.
    [28] Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer[J]. Lancet Oncol, 2010,11(1): 85-91.
    [29] Wang X, Hu C, Eisbruch A. Organ-sparing radiation therapy for head and neck cancer[J]. Nat Rev Clin Oncol, 2011,8(11): 639-48.
    [30] van de Water TA, Bijl HP, Westerlaan HE, et al. Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia[J]. Radiother Oncol, 2009,93(3): 54 5-52.
    [31] Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2008, 72 (5):1362-7.
    [32] Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic[J]. Int J Radiat Oncol Biol Phys,2010,76(3 Suppl):S10-9.
    [33] van der Laan HP, Gawryszuk A, Christianen ME, et al. Swallowing-sparing intensity-modulated radiotherapy for head and neck cancer patients: treatment planning optimization and clinical introduction[J]. Radiother Oncol, 2013, 107(3):282-7.
    [34] Paleri V, Roe JW, Strojan P, et al. Strategies to reduce longterm postchemoradiation dysphagia in patients with head and neck cancer: an evidence-based review[J]. Head Neck, 20 13,36(3):431-43.
    [35] De Ruyck K, Duprez F, Werbrouck J, et al. A predictive model for dysphagia following IMRT for head and neck cancer: introduction of the EMLasso technique[J]. Radiother Oncol, 2013, 10 7(3):295-9.
    [36] Amin N, Reddy K, Westerly D, et al. Sparing the larynx and esophageal inlet expedites feeding tube removal in patients with stage III-IV oropharyngeal squamous cell carcinoma treated with intensity-modulated radiotherapy[J]. Laryngoscope, 2012, 12 2(12): 2736-42.
    [37] Christianen ME, Schilstra C, Beetz I, et al. Predictive modelling for swallowing dysfunction after primary (chemo)radiation: results of a prospective observational study[J]. Radiother Oncol, 20 12,105(1):107-14.
    [38] Schwartz DL, Hutcheson K, Barringer D, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2010, 78(5):1356-65.
    [39] Mortensen HR, Jensen K, Aksglaede K, et al. Late dysphagia after IMRT for head and neck cancer and correlation with dose-volume parameters[J]. Radiother Oncol, 2013, 107(3):288-94.
    [40] Jellema AP, Doornaert P, Slotman BJ, et al. Does radiation dose to the salivary glands and oral cavity predict patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with curative radiotherapy?[J]. Radiother Oncol, 2005,77(2):164-71.
    [41] van Luijk P, Faber H, Schippers JM, et al. Bath and shower effects in the rat parotid gland explain increased relative risk of parotid gland dysfunction after intensity-modulated radiotherapy[J]. Int J Radiat Oncol Biol Phys,2009,74(4):1002-5.
    [42] Hope AJ,Lindsay PE,El Naqa I,et al. Modeling radiation pneumonitis risk with clinical,dosimetric,and spatial parameters[J]. Int J Radiat Oncol Biol Phys,2006,65(1):112-24.
    [43] Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer:pulmonary function,prediction,and prevention[J]. Int J Radiat Oncol Biol Phys,2005,63(1):5-24.
    [44] Tucker SL,Liao ZX,Travis EL.Estimation of the spatial distribution of target cells for radiation pneumonitis in mouse lung[J]. Int J Radiat Oncol Biol Phys,1997,38(5):1055-66.
    [45] Travis EL,Liao ZX,Tucker SL.Spatial heterogeneity of the volume effect for radiation pneumonitis in mouse lung[J].Int J Radiat Oncol Biol Phys,1997,38(5):1045-54.
    [46] Yorke ED,Jackson A,Rosenzweig KE,et al.Correlation of dosimetric factors and radiation pneumonitis for non-smallcell lung cancer patients in a recently completed dose escalation study[J].Int J Radiat Oncol Biol Phys,2005,63(3):672-82.
    [47] Vinogradskiy Y,Tucker SL,Liao Z,et al. Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients[J]. Int J Radiat Oncol Biol Phys,2012,82(5): 16 50-8.
    [48] Vogelius IR, Bentzen SM. A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis[J]. Acta Oncol,2012,51(8):975-83.
    [49] Lo SS, Fakiris AJ, Chang EL, et al. Stereotactic body radiation therapy: a novel treatment modality[J]. Nat Rev Clin Oncol, 20 10,7(1):44-54.
    [50] Nyman J, Johansson KA, Hultén U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer--mature results for medically inoperable patients[J]. Lung Cancer,2006,51(1): 97 -103.
    [51] Milano MT, Constine LS, Okunieff P. Normal tissue toxicity after small fi eld hypofractionated stereotactic body radiation[J].Radiat Oncol,2008,3:36.
    [52] Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus[J]. Int J Radiat Oncol Biol Phys, 2011,81(5): 1442-57.
    [53] Darby SC, Cutter DJ, Boerma M, et al. Radiation-related heart disease: current knowledge and future prospects[J].Int J Radiat Oncol Biol Phys,2010,76(3):656-65.
    [54] Darby SC,McGale P,Taylor CW,et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries[J]. Lancet Oncol,2005,6(8):557-65.
    [55] Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J]. N Engl J Med, 2013, 368(11): 987-98.
    [56] Tjessem KH, Johansen S, Malinen E, et al. Long-term cardiac mortality after hypofractionated radiation therapy in breast cancer[J]. Int J Radiat Oncol Biol Phys, 2013, 87(2):337-43.
    [57] Hodgson DC. Late effects in the era of modern therapy for Hodgkin lymphoma[J].Hematology Am Soc Hematol. Educ Program,2011, 2011: 323-9.
    [58] Nilsson G, Holmberg L, Garmo H, et al. Distribution of coronary artery stenosis after radiation for breast cancer[J]. J Clin Oncol, 20 12, 30(4): 380-6.
    [59] Offersen B, Højris I, Overgaard M. Radiation-induced heart morbidity after adjuvant radiotherapy of early breast cancer - Is it still an issue? [J] Radiother Oncol, 2011, 100(2): 157-9.
    [60] Gay HA, Barthold HJ, O’Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas[J]. Int J Radiat Oncol Biol Phys, 2012,83(3): e353-62.
    [61] Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dose-volume effects in the stomach and small bowel[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S101-7.
    [62] Viswanathan AN, Yorke ED, Marks LB, et al. Radiation dosevolume effects of the urinary bladder[J]. Int J Radiat Oncol Biol Phys, 2010,76(3 Suppl): S116-22.
    [63] Michalski JM, Gay H, Jackson A, et al. Radiation dose-volume effects in radiation-induced rectal injury[J]. Int J Radiat Oncol Biol Phys, 2010, 76(3 Suppl): S123-9.
    [64] Butterworth KT, McGarry CK, Trainor C, et al. Dose, doserate and fi eld size effects on cell survival following exposure to non-uniform radiation fields[J]. Phys Med Biol, 2012, 57(10): 31 97-206.
    [65] Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy[J]. Nat Rev Cancer, 2009, 9(5): 351-60.
    [66] Formenti SC, Demaria S. Systemic effects of local radiotherapy[J]. Lancet Oncol , 2009, 10(7): 718-26.
计量
  • 文章访问数:  1977
  • HTML全文浏览量:  481
  • PDF下载量:  1098
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-16
  • 修回日期:  2013-12-23
  • 刊出日期:  2014-05-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭