Advanced Search
HAN Jiaxuan, ZHAO Yun. Anti-tumor Mechanism of Sonodynamic Combined with Hyperthermia and Its Application in Tumor[J]. Cancer Research on Prevention and Treatment, 2022, 49(1): 78-82. DOI: 10.3971/j.issn.1000-8578.2022.21.1013
Citation: HAN Jiaxuan, ZHAO Yun. Anti-tumor Mechanism of Sonodynamic Combined with Hyperthermia and Its Application in Tumor[J]. Cancer Research on Prevention and Treatment, 2022, 49(1): 78-82. DOI: 10.3971/j.issn.1000-8578.2022.21.1013

Anti-tumor Mechanism of Sonodynamic Combined with Hyperthermia and Its Application in Tumor

Funding: 

Hubei Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy Fund Project 2019KZL10

More Information
  • Corresponding author:

    ZHAO Yun, E-mail: zhaoyun@ctgu.edu.cn

  • Received Date: September 07, 2021
  • Revised Date: October 24, 2021
  • Available Online: January 12, 2024
  • Sonodynamic therapy (SDT) is a new non-invasive treatment method that uses a combination of sono-sensitizers and low-intensity ultrasound (US) to treat malignant tumors. SDT is developed from photodynamic therapy (PDT). Because ultrasound can be transmitted deeper than light in tissues, sonosensitizers can be induced to be targeted, and sonosensitizers can be monitored in real time through ultrasound, SDT has significant advantages of locating the tumor site and activating the sensitizing agent in deep tissues. Therefore, compared with PDT, SDT can be used to treat tumors that are wider, deeper and more inaccessible. Hyperthermia (HT), as an adjuvant therapy, is applied to various established cancer treatments. Its mechanism is to increase the temperature of the tumor-bearing tissue to 40℃-43℃ to cause irreversible damage. This article reviews the cell signal regulation mechanism involved in SDT and HT in tumor therapy and the application progress of SDT-HT combination therapy on tumor.

  • [1]
    Yumita N, Iwase Y, Imaizumi T, et al. Sonodynamically-induced anticancer effects by functionalized fullerenes[J]. Anticancer Res, 2013, 33(8): 3145-3151. https://pubmed.ncbi.nlm.nih.gov/23898072/
    [2]
    Wan GY, Liu Y, Chen BW, et al. Recent advances of sonodynamic therapy in cancer treatment[J]. Cancer BiolMed, 2016, 13(3): 325-338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069838/
    [3]
    Liang Shuang, DengXiaoran, Chang Yun, et al. Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy[J]. Nano Lett, 2019, 19: 4134-4145. doi: 10.1021/acs.nanolett.9b01595
    [4]
    Umemura S, Yumita N, Nishigaki R. Enhancement of ultrasonically induced cell damage by a gallium -porphyrin complex, ATX-70[J]. Jpn J Cancer Res, 1993, 84 (5): 582-588. doi: 10.1111/j.1349-7006.1993.tb00179.x
    [5]
    Lin X, Song J, Chen X, et al. Ultrasound-Activated Sensitizers and Applications[J]. Angew Chem Int EdEngl, 2020, 59(34): 14212-14233. doi: 10.1002/anie.201906823
    [6]
    Chen H, Zhou X, Gao Y, et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy[J]. Drug Discov Today, 2014, 19(4): 502-509. doi: 10.1016/j.drudis.2014.01.010
    [7]
    刘洋. 多功能纳米胶束体系联合声动力与化疗靶向治疗肝癌的研究[D]. 天津医科大学, 2017.

    Liu Y. A Multifunctional nanoparticle system combines sonodynamics Therapy and chemotherapy totreat hepatocellular carcinoma[D]. Tianjin Medical University, 2017.
    [8]
    Wan GY, Liu Y, Chen BW, et al. Recent advances of sonodynamic therapy in cancer treatment[J]. Cancer Biol Med, 2016, 13(3): 325-338. doi: 10.20892/j.issn.2095-3941.2016.0068
    [9]
    Wood AKW, Sehgal CM. A Review of Low-Intensity Ultrasound for Cancer Therapy[J]. Ultrasound MedBiol, 2015, 41(4): 905-928. doi: 10.1016/j.ultrasmedbio.2014.11.019
    [10]
    马静文, 孙晓莲. 无机纳米声敏剂在肿瘤声动力治疗中的应用进展[J]. 药学进展, 2018, 42(11): 824-830. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ201811005.htm

    Ma JW, Sun XL. Application progress of inorganic nano sonosensitizers in sonodynamic therapy of tumor[J]. Yao Xue Jin Zhan, 2018, 42(11): 824-830. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ201811005.htm
    [11]
    Mchale AP, Callan JF, Nomikou N, et al. Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment[M]. Adv Exp Med Biol, 2016, 880: 429-450.
    [12]
    范蕾, 金秀, 张燕, 等. 热疗在直肠癌治疗中的研究进展[J]. 肿瘤药学, 2021, 11(1): 13-18. doi: 10.3969/j.issn.2095-1264.2021.01.03

    Fan Lei, Jin Xiu, Zhang Yan, et al. Research progress of hyperthermia in the treatment of rectal cancer[J]. Zhong Liu Yao Xue, 2021, 11(1): 13-18. doi: 10.3969/j.issn.2095-1264.2021.01.03
    [13]
    Bonzon C, Bouchier-Hayes L, Pagliari LJ, et al. Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death[J]. Mol Biol Cell, 2006, 17(5): 2150-2157. doi: 10.1091/mbc.e05-12-1107
    [14]
    Tu S, McStay GP, Boucher LM, et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis[J]. Nat Cell Biol, 2006, 8(1): 72-77. doi: 10.1038/ncb1340
    [15]
    Mahajan IM, Chen MD, Muro I, et al. BH3-only protein BIM mediates heat shock-induced apoptosis[J]. PLoS One, 2014, 9(1): e84388. doi: 10.1371/journal.pone.0084388
    [16]
    Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulates Bax-me-diated mitochondrial membrane permeabilization both directly and indirectly[J]. Mol Cell, 2005, 17(4): 525-535. doi: 10.1016/j.molcel.2005.02.003
    [17]
    Gonzalvez F, Ashkenazi A. New insights into apoptosis signaling by Apo2L/TRAIL[J]. Oncogene, 2010, 29(34): 4752-4765. doi: 10.1038/onc.2010.221
    [18]
    Schett G, Steiner C-W, Xu Q, et al. TNFa mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response[J]. Cell Death Differ, 2003, 10(10): 1126-1136. doi: 10.1038/sj.cdd.4401276
    [19]
    Yu DY, Matsuya Y, Zhao QL, et al. Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds[J]. Apoptosis, 2008, 13(3): 448-461. doi: 10.1007/s10495-008-0178-9
    [20]
    Tran SEF, Meinander A, Holmström TH, et al. Heat stress downregulates FLIP and sensitizes cells to Fas receptor-mediated apoptosis[J]. Cell Death Differ, 2003, 10(10): 1137-1147. doi: 10.1038/sj.cdd.4401278
    [21]
    Han J, Back SH, Hur J, et al. (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to celldeath[J]. Nat Cell Biol, 15: 481-490. doi: 10.1038/ncb2738
    [22]
    Kinoshita Manabu, Hynynen Kullervo. Mechanism of porphyrin-induced sonodynamic effect: possible role of hyperthermia[J]. Radiat Res, 2006, 165: 299-306. doi: 10.1667/RR3510.1
    [23]
    Ju D, Yamaguchi F, Zhan G, et al. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma[J]. Tumour Biol, 2016, 37(8): 10415-10426. doi: 10.1007/s13277-016-4931-3
    [24]
    Chen YW, Liu TY, Chang PH, et al. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor[J]. Nanoscale, 2016, 8(25): 12648-12657. doi: 10.1039/C5NR07782F
    [25]
    Dha B, Zsa B, Gg D, et al. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer[J]. Biomaterials, 2016, 93: 10-19. doi: 10.1016/j.biomaterials.2016.03.037
    [26]
    Wan Q, Zou C, Hu D, et al. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy[J]. Biomater Sci, 2019, 7(7): 3007-3015. doi: 10.1039/C9BM00292H
    [27]
    Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic Particle Imaging Guided Heating In Vivo using Gradient Fields For Arbitrary Localization of Magnetic Hyperthermia Therapy[J]. ACS Nano, 2018, 12(4): 3699-3713. doi: 10.1021/acsnano.8b00893
    [28]
    Fabris F, Lima E, Biasi E D, et al. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core–shell nanoparticles[J]. Nanoscale, 2019, 11(7): 3164-3172. doi: 10.1039/C8NR07834C
    [29]
    Zhang Y, Xu Y, Sun D, et al. Hollow magnetic nanosystem-boosting synergistic effect between magnetic hyperthermia and sonodynamic therapy via modulating reactive oxygen species and heat shock proteins[J]. ChemEng J, 2020, 390: 124521. https://www.sciencedirect.com/science/article/pii/S138589472030512X
    [30]
    Qi J, Li WS, Lu K, et al. pH and Thermal Dual-Sensitive Nanoparticle-Mediated Synergistic Anti-Tumor Effect of Immunotherapy and Microwave Thermotherapy[J]. Nano Letters, 2019, 19(8): 4949-4959. doi: 10.1021/acs.nanolett.9b01061
    [31]
    李宁, 刘晓燕. 纳米技术在疾病声动力疗法中的应用[J]. 药物生物技术, 2016, 23(5): 422-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201605011.htm

    Li Ning, Liu Xiaoyan. The application of nanotechnology in sonodynamic therapy of diseases[J]. Pharmaceutical Biotechnology, 2016, 23(5): 422-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201605011.htm
  • Cited by

    Periodical cited type(1)

    1. 蒋遥,温伟红,杨发,聂迪森,张武合,秦卫军. 多靶点CAR-T细胞治疗肿瘤的研究进展. 肿瘤防治研究. 2022(07): 709-714 . 本站查看

    Other cited types(3)

Catalog

    Article views (1945) PDF downloads (1529) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return