Advanced Search
ZHANG Huijie, LIU Liting, CUI Hongwei, YU Lei, YUE Genquan. Research Progress of CircRNAs Regulating Biological Behavior of Clear Cell Renal Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(8): 814-819. DOI: 10.3971/j.issn.1000-8578.2021.21.0493
Citation: ZHANG Huijie, LIU Liting, CUI Hongwei, YU Lei, YUE Genquan. Research Progress of CircRNAs Regulating Biological Behavior of Clear Cell Renal Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(8): 814-819. DOI: 10.3971/j.issn.1000-8578.2021.21.0493

Research Progress of CircRNAs Regulating Biological Behavior of Clear Cell Renal Cell Carcinoma

Funding: 

Natural Science Foundation of Inner Mongolia Autonomous Region 2015MS08115

Natural Science Foundation of Inner Mongolia Autonomous Region 2020LH08031

Health and Family Planning Scientific Research Program of Inner Mongolia Autonomous Region 201701066

More Information
  • Corresponding author:

    YUE Genquan, E-mail: yuegenquan1128@sina.com

  • Received Date: April 29, 2021
  • Revised Date: June 29, 2021
  • Available Online: January 12, 2024
  • Renal cell carcinoma is one of the ten multiple cancers, and its incidence rate and mortality rate have been increasing in more than 20 years. Clear cell renal cell carcinoma (ccRCC) is the most common histopathological subtype. Cyclic ribonucleic acids (circRNAs) are noncoding ribonucleic acids, which are widely distributed with diverse cellular functions and have organ- and tissue-specific expression patterns. Recent studies have shown that circRNAs are abnormally expressed in ccRCC and play an important role in the occurrence and development of ccRCC. However, there are few researches and related mechanisms of circRNAs regulating the biological behavior of ccRCC. Therefore, the paper mainly describes the research progress of circRNAs regulating the biological behavior of ccRCC and discusses its potential as a biomarker for early diagnosis and prognosis of ccRCC and targeted therapy.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    SiegelI RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. doi: 10.3322/caac.21590
    [2]
    Panda AC. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. http://www.ncbi.nlm.nih.gov/pubmed/30259358
    [3]
    Li Z, Ruan Y, Zhang H, et al. Tumor-suppressive circular RNAs: mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets[J]. Cancer Sci, 2019, 110(12): 3630-3638. doi: 10.1111/cas.14211
    [4]
    张旭, 马芳, 纳玮, 等. 环状RNA Hsa_circ_0026352在乳腺癌中的表达及临床意义[J]. 肿瘤防治研究, 2021, 48(1): 43-48. doi: 10.3971/j.issn.1000-8578.2021.20.0310

    Zhang X, Ma F, Na W, et al. Expression of Circular RNA Hsa_circ_0026352 in Breast Cancer and Its Clinical Significance[J]. Zhong Liu Fang Zhi Yan Jiu, 2021, 48(1): 43-48. doi: 10.3971/j.issn.1000-8578.2021.20.0310
    [5]
    Wei X, Dong Y, Chen X, et al. Construction of circRNA-based ceRNA network to reveal the role of circRNAs in the progression and prognosis of metastatic clear cell renal cell carcinoma[J]. Aging (Albany NY), 2020, 12(23): 24184-24207. http://www.researchgate.net/publication/349634843_Construction_of_circRNA-Based_ceRNA_Network_to_Reveal_the_Role_of_circRNAs_in_the_Progression_and_Prognosis_of_Hepatocellular_Carcinoma/download
    [6]
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [7]
    Ma C, Qin J, Zhang J, et al. Construction and analysis ofcircular RNA molecular regulatory networks in clear cell renal cell carcinoma[J]. Mol Med Rep, 2020, 21(1): 141-150. http://www.researchgate.net/publication/337181840_Construction_and_analysis_of_circular_RNA_molecular_regulatory_networks_in_clear_cell_renal_cell_carcinoma
    [8]
    Hu Q, Zhou T. EIciRNA-mediated gene expression: tunability and bimodality[J]. FEBS Lett, 2018, 592(20): 3460-3471. doi: 10.1002/1873-3468.13253
    [9]
    Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792-806. doi: 10.1016/j.molcel.2013.08.017
    [10]
    张永胜, 杨芹, 涂健, 等. 透明细胞性肾细胞癌组织TBX15蛋白表达及其临床意义[J]. 中华肿瘤防治杂志, 2019, 26(15): 1079-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201915004.htm

    Zhang YS, Yang Q, Tu J, et al. Expression of TBX15 protein in clear cell renal cell carcinoma and its clinical significance[J]. Zhonghua Zhong Liu Fang Zhi Za Zhi, 2019, 26(15): 1079-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201915004.htm
    [11]
    Zheng Z, Chen Z, Zhong Q, et al. CircPVT1 promotes progression in clear cell renal cell carcinoma by sponging miR-145-5p and regulating TBX15 expression[J]. Cancer Sci, 2021, 112(4): 1443-1456. doi: 10.1111/cas.14814
    [12]
    Li J, Huang C, Zou Y, et al. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p[J]. Mol Cancer, 2020, 19(1): 103. doi: 10.1186/s12943-020-01225-2
    [13]
    Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(9): 194596. doi: 10.1016/j.bbagrm.2020.194596
    [14]
    Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14(3): 361-369. doi: 10.1080/15476286.2017.1279788
    [15]
    Di Timoteo G, Dattilo D, Centrón-Broco A, et al. Modulation of circRNA Metabolism by m6A Modification[J]. Cell Rep, 2020, 31(6): 107641. doi: 10.1016/j.celrep.2020.107641
    [16]
    Li Y, Li T, Yang Y, et al. YY1-induced upregulation of FOXP4-AS1 and FOXP4 promote the proliferation of esophageal squamous cell carcinoma cells[J]. Cell Biol Int, 2020, 44(7): 1447-1457. doi: 10.1002/cbin.11338
    [17]
    Zhong LK, Zhou J, He X, et al. Long non-coding RNA FOXP4-AS1 acts as an adverse prognostic factor and regulates proliferation and apoptosis in nasopharyngeal carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24(15): 8008-8016. http://www.researchgate.net/publication/343540437_Long_non-coding_RNA_FOXP4-AS1_acts_as_an_adverse_prognostic_factor_and_regulates_proliferation_and_apoptosis_in_nasopharyngeal_carcinoma
    [18]
    Xiong Y, Zhang J, Song C. CircRNA ZNF609 functions as a competitive endogenous RNA to regulate FOXP4 expression by sponging miR-138-5p in renal carcinoma[J]. J Cell Physiol, 2019, 234(7): 10646-10654. doi: 10.1002/jcp.27744
    [19]
    Wang Y, Zheng B, Xu M, et al. Prediction and Analysis of Hub Genes in Renal Cell Carcinoma based on CFS Gene Selection Method Combined with Adaboost Algorithm[J]. Med Chem, 2020, 16(5): 654-663. doi: 10.2174/1573406415666191004100744
    [20]
    Han B, Shaolong E, Luan L, et al. CircHIPK3 Promotes Clear Cell Renal Cell Carcinoma (ccRCC) Cells Proliferation and Metastasis via Altering of miR-508-3p/CXCL13 Signal[J]. Onco Targets Ther, 2020, 13: 6051-6062. doi: 10.2147/OTT.S251436
    [21]
    Liu H, Hu G, Wang Z, et al. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis[J]. Theranostics, 2020, 10(23): 10791-10807. doi: 10.7150/thno.47239
    [22]
    Li W, Song Y, Rao T, et al. CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma[J]. J Cell Mol Med, 2021, Online ahead of print. doi: 10.1111/jcmm.15911
    [23]
    Xu H, Xu WH, Ren F, et al. Prognostic value of epithelial-mesenchymal transition markers in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2020, 12(1): 866-883. http://www.researchgate.net/publication/339388015_Prognostic_value_of_epithelial-mesenchymal_transition_markers_in_clear_cell_renal_cell_carcinoma
    [24]
    Zhang D, Yang XJ, Luo QD, et al. Down-Regulation of Circular RNA_000926 Attenuates Renal Cell Carcinoma Progression through miRNA-411-Dependent CDH2 Inhibition[J]. Am J Pathol, 2019, 189(12): 2469-2486. doi: 10.1016/j.ajpath.2019.06.016
    [25]
    Li W, Yang FQ, Sun CM, et al. CircPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma[J]. Theranostics, 2020, 10(10): 4395-4409. doi: 10.7150/thno.43239
    [26]
    Chen Q, Liu T, Bao Y, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway[J]. Cancer Lett, 2020, 469: 68-77. doi: 10.1016/j.canlet.2019.10.017
    [27]
    Sun J, Yin A, Zhang W, et al. CircUBAP2 Inhibits Proliferation and Metastasis of Clear Cell Renal Cell Carcinoma via Targeting miR-148a-3p/FOXK2 Pathway[J]. Cell Transplant, 2020, 29: 963689720925751. http://www.researchgate.net/publication/341506365_CircUBAP2_Inhibits_Proliferation_and_Metastasis_of_Clear_Cell_Renal_Cell_Carcinoma_via_Targeting_miR-148a-3pFOXK2_Pathway
    [28]
    Wang K, Sun Y, Tao W, et al. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals[J]. Cancer Lett, 2017, 394: 1-12. doi: 10.1016/j.canlet.2016.12.036
    [29]
    Chen T, Shao S, Li W, et al. The circular RNA hsa-circ-0072309 plays anti-tumour roles by sponging miR-100 through the deactivation of PI3K/AKT and mTOR pathways in the renal carcinoma cell lines[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 3638-3648. doi: 10.1080/21691401.2019.1657873
    [30]
    Wang G, Xue W, Jian W, et al. The effect of Hsa_circ_0001451 in clear cell renal cell carcinoma cells and its relationship with clinicopathological features[J]. J Cancer, 2018, 9(18): 3269-3277. doi: 10.7150/jca.25902
    [31]
    Lin L, Cai J. Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation[J]. J Cell Biochem, 2020, 121(11): 4377-4385. doi: 10.1002/jcb.29620
    [32]
    Huang Y, Zhang Y, Jia L, et al. Circular RNA ABCB10 promotes tumor progression and correlates with pejorative prognosis in clear cell renal cell carcinoma[J]. Int J Biol Markers, 2019, 34(2): 176-183. doi: 10.1177/1724600819842279
    [33]
    Han Z, Zhang Y, Sun Y, et al. ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma[J]. Cancer Res, 2018, 78(10): 2550-2563. doi: 10.1158/0008-5472.CAN-17-1575
    [34]
    Yan L, Liu G, Cao H, et al. Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation[J]. Biochem Biophys Res Commun, 2019, 519(1): 172-178. doi: 10.1016/j.bbrc.2019.08.093
  • Related Articles

    [1]SU Min, WANG Yan, HUA Jie, WANG Tianyun, XU Shengnan, KUI Xiang. Cyclin F Expression in Clear Cell Renal Cell Carcinoma and Its Effect on Biological Behavior of Renal Carcinoma Cell Lines[J]. Cancer Research on Prevention and Treatment, 2025, 52(6): 474-480. DOI: 10.3971/j.issn.1000-8578.2025.24.0553
    [2]ZHAO Yuqiao, LIU Guanglin, WANG Haicun, GAO Xin, JIANG Xingming, LIU Lang. Influence of LncRNA NKILA on Biological Behavior of Malignant Tumors and Related Mechanism[J]. Cancer Research on Prevention and Treatment, 2022, 49(1): 67-71. DOI: 10.3971/j.issn.1000-8578.2022.21.0792
    [3]HU Wei, ZHU Hengcheng, LI Haoyong, LIU Xiuheng, ZENG Yan. CD248 Expression in Clear Cell Renal Cell Carcinoma and Its Clinical Significance[J]. Cancer Research on Prevention and Treatment, 2020, 47(3): 194-197. DOI: 10.3971/j.issn.1000-8578.2020.19.0776
    [4]ZHANG Lu, WU Song. Radiogenomics and Its Research Progress in Renal Clear Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2019, 46(5): 486-489. DOI: 10.3971/j.issn.1000-8578.2019.18.1429
    [5]ZHANG Xiaofang, ZHAO Ying, LI Qi. Effect of Long-chain Non-coding RNA FILNC1 Targeting c-Myc Expression on Biological Behavior of Renal Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2018, 45(9): 629-633. DOI: 10.3971/j.issn.1000-8578.2018.17.1692
    [6]YIN Rui, WU Weixin, WANG Honghua, CHEN Yan. Effects of FEN1 Overexpression on Biological Behaviors of Hepatocellular Carcinoma Cells and Prognosis of Patients[J]. Cancer Research on Prevention and Treatment, 2016, 43(10): 848-853. DOI: 10.3971/j.issn.1000-8578.2016.10.005
    [7]HE Xian-feng, YANG Shu-hua, HE Yu, FU De-hao, HU Yong, LIU Jia-guo. Effects of Zoledronic Acid on Osteosarcoma LM8 Cell Line Biological Behaviors[J]. Cancer Research on Prevention and Treatment, 2008, 35(02): 77-80. DOI: 10.3971/j.issn.1000-8578.3415
    [8]LI Xiao-mei, GENG Jing-shu, SHI Qing-tao, LIU Jing-lei, FENG Zhan-jun, WANG Hong-mei. The difference and mechanism of identical transplant-tumors' biological deed in different organic micro-environment[J]. Cancer Research on Prevention and Treatment, 2005, 32(04): 226-228. DOI: 10.3971/j.issn.1000-8578.152
    [9]SHI Xiao-yan, HU Guo-qing, CAO Rong-hua. The significance of the expression of Ki67 antigen in nasopharyngeal carcinoma[J]. Cancer Research on Prevention and Treatment, 2004, 31(01): 4-6. DOI: 10.3971/j.issn.1000-8578.2043
    [10]Lin Bing-huang, Wang Jin-sheng, Geng Jun-feng. Study of the Relationship between nm23 Gene Expression and Gastric Cancer Biological Behavior[J]. Cancer Research on Prevention and Treatment, 2001, 28(03): 184-185. DOI: 10.3971/j.issn.1000-8578.2161

Catalog

    Figures(2)  /  Tables(2)

    Article views (1717) PDF downloads (616) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return