Advanced Search
WANG Zihe, LI Zengliang, FANG Xuzhe, ZHU Jin. Research Progress on Influence of DNA Methylation on Signal Pathways Related to Invasion and Metastasis of Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 956-960. DOI: 10.3971/j.issn.1000-8578.2022.22.0052
Citation: WANG Zihe, LI Zengliang, FANG Xuzhe, ZHU Jin. Research Progress on Influence of DNA Methylation on Signal Pathways Related to Invasion and Metastasis of Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 956-960. DOI: 10.3971/j.issn.1000-8578.2022.22.0052

Research Progress on Influence of DNA Methylation on Signal Pathways Related to Invasion and Metastasis of Nasopharyngeal Carcinoma

Funding: 

Hangzhou Science and Technology Development Plan Project 20201203B200

More Information
  • Corresponding author:

    ZHU Jin, E-mail: zhujin2698@163.com

  • Received Date: January 13, 2022
  • Revised Date: April 23, 2022
  • Available Online: January 12, 2024
  • Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck region. NPC has the characteristics of insidious onset, strong invasiveness and early lymph node metastasis. A variety of signaling pathways play a role in the invasion and metastasis of nasopharyngeal carcinoma, but the specific mechanism has not yet been fully elucidated. Recent studies have found that DNA methylation of nasopharyngeal carcinoma-related genes can affect the invasion and metastasis of nasopharyngeal carcinoma through a variety of signaling pathways including Wnt/β-catenin, PI3K/AKT and MAPK signaling pathways. This article reviews the specific mechanism of DNA methylation affecting the invasion and metastasis of nasopharyngeal carcinoma through the above-mentioned signaling pathways.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Zhang J, Wen X, Liu N, et al. Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest[J]. J Exp Clin Cancer Res, 2017, 36(1): 147. doi: 10.1186/s13046-017-0621-2
    [2]
    Zhang P, He Q, Lei Y, et al. m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression[J]. Cell Death Dis, 2018, 9(12): 1169. doi: 10.1038/s41419-018-1224-3
    [3]
    Zhao Y, Lei Y, He SW, et al. Hypermethylation of UCHL1 Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing Degradation of Cortactin (CTTN)[J]. Cells, 2020, 9(3): 559. doi: 10.3390/cells9030559
    [4]
    Zhang J, Li YQ, Guo R, et al. Hypermethylation of SHISA3 Promotes Nasopharyngeal Carcinoma Metastasis by Reducing SGSM1 Stability[J]. Cancer Res, 2019, 79(4): 747-759. doi: 10.1158/0008-5472.CAN-18-1754
    [5]
    Peng H, Zhang J, Zhang PP, et al. ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 11. doi: 10.1186/s13046-018-0997-7
    [6]
    Zhang J, Zheng ZQ, Yuan YW, et al. NFAT1 Hypermethylation Promotes Epithelial-Mesenchymal Transition and Metastasis in Nasopharyngeal Carcinoma by Activating ITGA6 Transcription[J]. Neoplasia, 2019, 21(3): 311-321. doi: 10.1016/j.neo.2019.01.006
    [7]
    Shi F, Zhou M, Shang L, et al. EBV(LMP1)-induced metabolic reprogramming inhibits necroptosis through the hypermethylation of the RIP3 promoter[J]. Theranostics, 2019, 9(9): 2424-2438. doi: 10.7150/thno.30941
    [8]
    Ren XY, Wen X, Li YQ, et al. TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 227. doi: 10.1186/s13046-018-0881-5
    [9]
    Zhang Y, Hu CF, Chen J, et al. LATS2 is de-methylated and overexpressed in nasopharyngeal carcinoma and predicts poor prognosis[J]. BMC Cancer, 2010, 10: 538. doi: 10.1186/1471-2407-10-538
    [10]
    Li Y, Yang X, Du X, et al. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma[J]. Clin Cancer Res, 2018, 24(24): 6495-6508. doi: 10.1158/1078-0432.CCR-18-0532
    [11]
    Fardi M, Solali S, Farshdousti Hagh M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review[J]. Genes Dis, 2018, 5(4): 304-311. doi: 10.1016/j.gendis.2018.06.003
    [12]
    Luo J, Li YN, Wang F, et al. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer[J]. Int J Biol Sci, 2010, 6(7): 784-795.
    [13]
    Ahuja N, Sharma AR, Baylin SB. Epigenetic Therapeutics: A New Weapon in the War Against Cancer[J]. Annu Rev Med, 2016, 67: 73-89. doi: 10.1146/annurev-med-111314-035900
    [14]
    Nebbioso A, Tambaro FP, Dell'Aversana C, et al. Cancer epigenetics: Moving forward[J]. PLoS Genet, 2018, 14(6): e1007362. doi: 10.1371/journal.pgen.1007362
    [15]
    Bruce JP, Yip K, Bratman SV, et al. Nasopharyngeal Cancer: Molecular Landscape[J]. J Clin Oncol, 2015, 33(29): 3346-3355. doi: 10.1200/JCO.2015.60.7846
    [16]
    Fattahi S, Amjadi-Moheb F, Tabaripour R, et al. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond[J]. Life Sci, 2020, 262: 118513. doi: 10.1016/j.lfs.2020.118513
    [17]
    Liu J, Li H, Sun L, et al. Epigenetic Alternations of MicroRNAs and DNA Methylation Contribute to Liver Metastasis of Colorectal Cancer[J]. Dig Dis Sci, 2019, 64(6): 1523-1534. doi: 10.1007/s10620-018-5424-6
    [18]
    Guan Z, Zhang J, Wang J, et al. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma[J]. Mol Cancer, 2014, 13: 257. doi: 10.1186/1476-4598-13-257
    [19]
    Fan J, Zhang Y, Mu J, et al. TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells[J]. Clin Epigenetics, 2018, 10(1): 103. doi: 10.1186/s13148-018-0535-7
    [20]
    Jiang Y, Liu L, Xiang Q, et al. SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of Wnt/β-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells[J]. Clin Epigenetics, 2020, 12(1): 41. doi: 10.1186/s13148-020-00833-5
    [21]
    Salik B, Yi H, Hassan N, et al. Targeting RSPO3-LGR4 Signaling for Leukemia Stem Cell Eradication in Acute Myeloid Leukemia[J]. Cancer Cell, 2020, 38(2): 263-278. e6. doi: 10.1016/j.ccell.2020.05.014
    [22]
    Soleas JP, D'Arcangelo E, Huang L, et al. Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension[J]. Biomaterials, 2020, 254: 120128. doi: 10.1016/j.biomaterials.2020.120128
    [23]
    Choi BR, Cave C, Na CH, et al. GDE2-Dependent Activation of Canonical Wnt Signaling in Neurons Regulates Oligodendrocyte Maturation[J]. Cell Rep, 2020, 31(5): 107540. doi: 10.1016/j.celrep.2020.107540
    [24]
    Zhang M, Weng W, Zhang Q, et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5[J]. J Hematol Oncol, 2018, 11(1): 113. doi: 10.1186/s13045-018-0656-7
    [25]
    Cao MQ, You AB, Zhu XD, et al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a[J]. J Hematol Oncol, 2018, 11(1): 12. doi: 10.1186/s13045-018-0555-y
    [26]
    Ge X, Wang X. Role of Wnt canonical pathway in hematological malignancies[J]. J Hematol Oncol, 2010, 3: 33. doi: 10.1186/1756-8722-3-33
    [27]
    He S, Tang S. WNT/β-catenin signaling in the development of liver cancers[J]. Biomed Pharmacother, 2020, 132: 110851. doi: 10.1016/j.biopha.2020.110851
    [28]
    Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma[J]. Int J Mol Sci, 2020, 21(14): 4852. doi: 10.3390/ijms21144852
    [29]
    Zhang X, Wang L, Qu Y. Targeting the β-catenin signaling for cancer therapy[J]. Pharmacol Res, 2020, 160: 104794. doi: 10.1016/j.phrs.2020.104794
    [30]
    Wei CY, Zhu MX, Yang YW, et al. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma[J]. J Hematol Oncol, 2019, 12(1): 21. doi: 10.1186/s13045-019-0711-z
    [31]
    Zhou J, Toh SHM, Chan ZL, et al. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase[J]. J Hematol Oncol, 2018, 11(1): 36. doi: 10.1186/s13045-018-0581-9
    [32]
    Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy[J]. J Hematol Oncol, 2019, 12(1): 134. doi: 10.1186/s13045-019-0818-2
    [33]
    Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer[J]. J Hematol Oncol, 2020, 13(1): 165. doi: 10.1186/s13045-020-00990-3
    [34]
    Pearlman RL, Montes de Oca MK, Pal HC, et al. Potential therapeutic targets of epithelial-mesenchymal transition in melanoma[J]. Cancer Lett, 2017, 391: 125-140. doi: 10.1016/j.canlet.2017.01.029
    [35]
    Hu Y, Qi MF, Xu QL, et al. Candidate tumor suppressor ZNF154 suppresses invasion and metastasis in NPC by inhibiting the EMT via Wnt/β-catenin signalling[J]. Oncotarget, 2017, 8(49): 85749-85758. doi: 10.18632/oncotarget.20479
    [36]
    Zhang Y, Fan J, Fan Y, et al. The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-Fu toxicity via β-catenin/Cdc25c signaling and G2/M arrest[J]. Clin Epigenetics, 2018, 10(1): 26. doi: 10.1186/s13148-018-0459-2
    [37]
    Mayer IA, Arteaga CL. The PI3K/AKT Pathway as a Target for Cancer Treatment[J]. Annu Rev Med, 2016, 67: 11-28. doi: 10.1146/annurev-med-062913-051343
    [38]
    Lee MS, Jeong MH, Lee HW, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis[J]. Nat Commun, 2015, 6: 7769. doi: 10.1038/ncomms8769
    [39]
    Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J]. Development, 2016, 143(17): 3050-3060. doi: 10.1242/dev.137075
    [40]
    Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways[J]. Cancers (Basel), 2017, 9(5): 52. doi: 10.3390/cancers9050052
    [41]
    Yip WK, Seow HF. Activation of phosphatidylinositol 3-kinase/Akt signaling by EGF downregulates membranous E-cadherin and β-catenin and enhances invasion in nasopharyngeal carcinoma cells[J]. Cancer Lett, 2012, 318(2): 162-172. doi: 10.1016/j.canlet.2011.12.018
    [42]
    Zhang P, Ma J, Gao J, et al. Downregulation of monocarboxylate transporter 1 inhibits the invasion and migration through suppression of the PI3K/Akt signaling pathway in human nasopharyngeal carcinoma cells[J]. J Bioenerg Biomembr, 2018, 50(4): 271-281. doi: 10.1007/s10863-018-9763-y
    [43]
    Chen J, Jiang C, Fu L, et al. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin β1 and Merlin[J]. Int J Biol Sci, 2019, 15(9): 1802-1815. doi: 10.7150/ijbs.34785
    [44]
    Hwang CF, Chien CY, Huang SC, et al. Fibulin-3 is associated with tumour progression and a poor prognosis in nasopharyngeal carcinomas and inhibits cell migration and invasion via suppressed AKT activity[J]. J Pathol, 2010, 222(4): 367-379. doi: 10.1002/path.2776
    [45]
    Sulzmaier FJ, Ramos JW. RSK isoforms in cancer cell invasion and metastasis[J]. Cancer Res, 2013, 73(20): 6099-6105. doi: 10.1158/0008-5472.CAN-13-1087
    [46]
    Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer[J]. Reproduction, 2015, 149(1): R35-R48. doi: 10.1530/REP-14-0220
    [47]
    Bang YJ, Kwon JH, Kang SH, et al. Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma[J]. Biochem Biophys Res Commun, 1998, 250(1): 43-47. doi: 10.1006/bbrc.1998.9256
    [48]
    Rao A, Herr DR. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(7): 1318-1327. doi: 10.1016/j.bbamcr.2017.05.001
    [49]
    Tang Q, Wu J, Zheng F, et al. Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKα and Interaction of PPARγ and Sp1 in Lung Cancer[J]. Cell Physiol Biochem, 2017, 41(1): 339-357. doi: 10.1159/000456281
    [50]
    Zhao W, Ma N, Wang S, et al. RERG suppresses cell proliferation, migration and angiogenesis through ERK/NF-κB signaling pathway in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 88. doi: 10.1186/s13046-017-0554-9
    [51]
    Choi GCG, Li J, Wang Y, et al. The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR-MEK-ERK signaling and is silenced in carcinomas by CpG methylation[J]. Mol Cancer Res, 2014, 12(2): 228-238. doi: 10.1158/1541-7786.MCR-13-0195
    [52]
    Li L, Zhang Y, Fan Y, et al. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes[J]. Epigenomics, 2015, 7(2): 155-173. doi: 10.2217/epi.14.79
    [53]
    Ren X, Yang X, Cheng B, et al. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma[J]. Nat Commun, 2017, 8: 14053. doi: 10.1038/ncomms14053
    [54]
    Law EWL, Cheung AKL, Kashuba VI, et al. Anti-angiogenic and tumor-suppressive roles of candidate tumor-suppressor gene, Fibulin-2, in nasopharyngeal carcinoma[J]. Oncogene, 2012, 31(6): 728-738. doi: 10.1038/onc.2011.272
    [55]
    Li HP, Peng CC, Wu CC, et al. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 102. doi: 10.1186/s13046-018-0754-y
    [56]
    Zhao Y, Hong XH, Li K, et al. ZNF582 hypermethylation promotes metastasis of nasopharyngeal carcinoma by regulating the transcription of adhesion molecules Nectin-3 and NRXN3[J]. Cancer Commun (Lond), 2020, 40(12): 721-737. doi: 10.1002/cac2.12104
    [57]
    Sorm F, Veselý J. Effect of 5-aza-2'-deoxycytidine against leukemic and hemopoietic tissues in AKR mice[J]. Neoplasma, 1968, 15(4): 339-343.
    [58]
    Kaminskas E, Farrell AT, Wang YC, et al. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension[J]. Oncologist, 2005, 10(3): 176-182. doi: 10.1634/theoncologist.10-3-176

Catalog

    Article views (1181) PDF downloads (323) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return