Advanced Search
XIA Siyu, ZHAO Zitong, LI Li. Correlation Between STK11 Gene Mutation and Immunotherapy of Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(8): 850-854. DOI: 10.3971/j.issn.1000-8578.2022.21.1133
Citation: XIA Siyu, ZHAO Zitong, LI Li. Correlation Between STK11 Gene Mutation and Immunotherapy of Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(8): 850-854. DOI: 10.3971/j.issn.1000-8578.2022.21.1133

Correlation Between STK11 Gene Mutation and Immunotherapy of Non-small Cell Lung Cancer

More Information
  • Corresponding author:

    LI Li, E-mail: lisophiali@aliyun.com

  • Received Date: October 08, 2021
  • Revised Date: December 04, 2021
  • Available Online: January 12, 2024
  • Lung cancer is one of the most common malignant tumors. Globally, the incidence and mortality of lung cancer are very high and on the rise. In recent years, immune checkpoint inhibitors (ICIs) have a significant survival advantage in treating advanced NSCLC. However, for NSCLC patients with positive driver genes, ICIs are not effective. But some tumor suppressor genes have varying degrees of impact on immunotherapy through mutations or deletions. Among them, serine/threonine kinase 11 (STK11) gene mutations are closely related to PD-1/PD-L1 ICIs. Studies have found that STK11 mutations are related to reduced immune cell infiltration, low PD-L1 expression and poor response to PD-L1 inhibition. This article reviews the research progress of the correlation between STK11 gene mutation and immunotherapy on NSCLC.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021 [J]. CA Cancer J Cin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654
    [2]
    王莉新, 吴文斌, 朱诗国. 非小细胞肺癌免疫治疗的策略与展望[J]. 现代免疫学, 2018, 38(3): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201803012.htm

    Wang LX, Wu WB, Zhu SG. Strategies and prospects of immunotherapy for non-small cell lung cancer[J]. Xian Dai Mian Yi Xue, 2018, 38(3): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201803012.htm
    [3]
    Gibert J, Clavé S, Hardy-Werbin M, et al. Concomitant genomic alterations in KRAS mutant advanced lung adenocarcinoma[J]. Lung Cancer, 2020, 140: 42-45. doi: 10.1016/j.lungcan.2019.12.003
    [4]
    陈捷, 姜达, 黄芳. 非小细胞肺癌中驱动基因状态与免疫治疗相关性的研究进展[J]. 中国肺癌杂志, 2019, 22(4): 233-238. https://www.cnki.com.cn/Article/CJFDTOTAL-FAIZ201904007.htm

    Chen J, Jiang D, Huang F. Advances of the Correlation between Driver Gene Status and Immunotherapy in Non-small Cell Lung Cancer[J]. Zhongguo Fei Ai Za Zhi, 2019, 22(4): 233-238. https://www.cnki.com.cn/Article/CJFDTOTAL-FAIZ201904007.htm
    [5]
    Zhao N, Wilkerson MD, Shah U, et al. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma[J]. Lung Cancer, 2014, 86(2): 255-261. doi: 10.1016/j.lungcan.2014.08.013
    [6]
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer[J]. Cancer Cell, 2007, 12(1): 9-22. doi: 10.1016/j.ccr.2007.05.008
    [7]
    Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade[J]. J Biol, 2003, 2(4): 28. doi: 10.1186/1475-4924-2-28
    [8]
    Shirwany NA, Zou MH. AMPK: a cellular metabolic and redox sensor. A minireview[J]. Front Biosci (Landmark Ed), 2014, 19(3): 447-474. doi: 10.2741/4218
    [9]
    Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation[J]. Biochem J, 2000, 345 Pt 3(Pt 3): 437-443.
    [10]
    Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7): 2164-2172. doi: 10.2337/db13-0368
    [11]
    Lizcano JM, Göransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1[J]. EMBO J, 2004, 23(4): 833-843. doi: 10.1038/sj.emboj.7600110
    [12]
    Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling[J]. Biochem Soc Trans, 2003, 31(Pt 3): 573-578.
    [13]
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003, 115(5): 577-590. doi: 10.1016/S0092-8674(03)00929-2
    [14]
    Wang Z, Wang N, Liu P, et al. AMPK and Cancer[J]. Exp Suppl, 2016, 107: 203-226.
    [15]
    江美林, 彭文颖, 李佳, 等. 非小细胞肺癌免疫治疗生物标志物研究进展[J]. 肿瘤防治研究, 2018, 45(10): 805-810. doi: 10.3971/j.issn.1000-8578.2018.17.1514

    Jiang ML, Peng WY, Li J, et al. Research progress in non-small cell lung cancer immunotherapy biomarkers[J]. Zhong Liu Fang Zhi Yan Jiu, 2018, 45(10): 805-810. doi: 10.3971/j.issn.1000-8578.2018.17.1514
    [16]
    Aggarwal C, Thompson JC, Chien AL, et al. Baseline Plasma Tumor Mutation Burden Predicts Response to Pembrolizumab-based Therapy in Patients with Metastatic Non-Small Cell Lung Cancer[J]. Clin Cancer Res, 2020, 26(10): 2354-2361. doi: 10.1158/1078-0432.CCR-19-3663
    [17]
    Biton J, Mansuet-Lupo A, Pécuchet N, et al. TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the Response to Anti-PD-1 in Lung Adenocarcinoma[J]. Clin Cancer Res, 2018, 24(22): 5710-5723. doi: 10.1158/1078-0432.CCR-18-0163
    [18]
    Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma[J]. Cancer Discov, 2018, 8(7): 822-835. doi: 10.1158/2159-8290.CD-18-0099
    [19]
    Rizvi H, Sanchez-Vega F, La K, et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing[J]. J Clin Oncol, 2018, 36(7): 633-641. doi: 10.1200/JCO.2017.75.3384
    [20]
    Skoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities[J]. Cancer Discov, 2015, 5(8): 860-877. doi: 10.1158/2159-8290.CD-14-1236
    [21]
    Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy[J]. Nat Rev Cancer, 2019, 19(9): 495-509. doi: 10.1038/s41568-019-0179-8
    [22]
    Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501. doi: 10.1056/NEJMc1713444
    [23]
    Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413. doi: 10.1126/science.aan6733
    [24]
    Carbone DP, Reck M, Paz-Ares L, et al. First-Line Nivolumab in Stage Ⅳ or Recurrent Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2017, 376(25): 2415-2426. doi: 10.1056/NEJMoa1613493
    [25]
    Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5): 541-550. doi: 10.1038/s41591-018-0014-x
    [26]
    Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]. Nat Rev Cancer, 2016, 16(5): 275-287. doi: 10.1038/nrc.2016.36
    [27]
    Donnem T, Kilvaer TK, Andersen S, et al. Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer[J]. Ann Oncol, 2016, 27(2): 225-232. doi: 10.1093/annonc/mdv560
    [28]
    Kim HJ, Cantor H. CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful[J]. Cancer Immunol Res, 2014, 2(2): 91-98. doi: 10.1158/2326-6066.CIR-13-0216
    [29]
    Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma[J]. Br J Cancer, 2006, 94(2): 275-280. doi: 10.1038/sj.bjc.6602934
    [30]
    Wang H, Guo J, Shang X, et al. Less immune cell infiltration and worse prognosis after immunotherapy for patients with lung adenocarcinoma who harbored STK11 mutation[J]. Int Immunopharmacol, 2020, 84: 106574. doi: 10.1016/j.intimp.2020.106574
    [31]
    El Osta B, Behera M, Kim S, et al. Characteristics and Outcomes of Patients With Metastatic KRAS-Mutant Lung Adenocarcinomas: The Lung Cancer Mutation Consortium Experience[J]. J Thorac Oncol, 2019, 14(5): 876-889. doi: 10.1016/j.jtho.2019.01.020
    [32]
    La Fleur L, Falk-Sörqvist E, Smeds P, et al. Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11[J]. Lung Cancer, 2019, 130: 50-58. doi: 10.1016/j.lungcan.2019.01.003
    [33]
    Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma[J]. Oncogene, 2016, 35(24): 3209-3216. doi: 10.1038/onc.2015.375
    [34]
    Bange E, Marmarelis ME, Hwang WT, et al. Impact of KRAS and TP53 Co-Mutations on Outcomes After First-Line Systemic Therapy Among Patients With STK11-Mutated Advanced Non-Small-Cell Lung Cancer[J]. JCO Precis Oncol, 2019, 3: PO. 18.00326.
    [35]
    Skoulidis F, Li BT, Dy GK, et al. Sotorasib for Lung Cancers with KRAS p. G12C Mutation[J]. N Engl J Med, 2021, 384(25): 2371-2381. doi: 10.1056/NEJMoa2103695
    [36]
    Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis[J]. Nat Med, 2017, 23(11): 1362-1368. doi: 10.1038/nm.4407
    [37]
    Papillon-Cavanagh S, Doshi P, Dobrin R, et al. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort[J]. ESMO Open, 2020, 5(2): e000706. doi: 10.1136/esmoopen-2020-000706
    [38]
    Gadgeel S, Rodríguez-Abreu D, Speranza G, et al. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2020, 38(14): 1505-1517. doi: 10.1200/JCO.19.03136
    [39]
    Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial[J]. Lancet, , 2019, 393(10183): 1819-1830. doi: 10.1016/S0140-6736(18)32409-7
    [40]
    Armon S, Hofman P, Ilié M. Perspectives and Issues in the Assessment of SMARCA4 Deficiency in the Management of Lung Cancer Patients[J]. Cells, 2021, 10(8): 1920. doi: 10.3390/cells10081920

Catalog

    Figures(1)

    Article views (2793) PDF downloads (1089) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return