Citation: | WAN Xiaoying, ZHOU Songwen. Research Progress of M2-type Tumor-associated Macrophages in Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 733-737. DOI: 10.3971/j.issn.1000-8578.2022.21.1266 |
Tumor-associated macrophages (TAMs) account for a large proportion in tumor stroma, and can be divided into M1 type (anti-tumoral) and M2 type (pro-tumoral). Recently, many experimental and clinical studies have shown that M2-type TAMs are significantly correlated with tumor stage, tumor cell differentiation, depth of invasion, angiogenesis, lymph node metastasis and therapeutic drug resistance, which eventually affects the prognosis of tumor patients. Targeted TAMs therapy is expected to benefit cancer patients. This paper reviews the recent research of M2-type TAMs in lung cancer.
Competing interests: The authors declare that they have no competing interests.
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708
|
[2] |
Wan X, Xie B, Sun H, et al. Exosomes derived from M2 type tumor-associated macrophage promoteosimertinib resistance in non-small cell lung cancer through MSTRG. 292666.16-miR-6836-5p-MAPK8IP3 axis[J]. Cancer Cell Int, 2022, 22(1): 83. doi: 10.1186/s12935-022-02509-x
|
[3] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4): 229-239. doi: 10.1016/j.it.2015.02.004
|
[4] |
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications[J]. J Hematol Oncol, 2019, 12(1): 76. doi: 10.1186/s13045-019-0760-3
|
[5] |
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade[J]. Immunity, 2021, 54(5): 885-902. doi: 10.1016/j.immuni.2021.03.022
|
[6] |
Cox N, Pokrovskii M, Vicario R, et al. Origins, Biology, and Diseases of Tissue Macrophages[J]. Ann Rev Immunol, 2021, 39: 313-344. doi: 10.1146/annurev-immunol-093019-111748
|
[7] |
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment[J]. Int J Mol Sci, 2021, 22(13): 7239. doi: 10.3390/ijms22137239
|
[8] |
Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity[J]. Ann Rev Pathol, 2020, 15: 123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
|
[9] |
Raggi F, Pelassa S, Pierobon D, et al. Regulation of Human Macrophage M1-M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1[J]. Front Immunol, 2017, 8: 1097. doi: 10.3389/fimmu.2017.01097
|
[10] |
Galván-Peña S, O'Neill LA. Metabolic reprograming in macrophage polarization[J]. Front Immunol, 2014, 5: 420.
|
[11] |
Pan Y, Yu Y, Wang X, et al. Tumor-Associated Macrophages in Tumor Immunity[J]. FrontI Immunol, 2020, 11: 583084. doi: 10.3389/fimmu.2020.583084
|
[12] |
Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease[J]. Annu Rev Immunol, 2013, 31: 317-343. doi: 10.1146/annurev-immunol-032712-095906
|
[13] |
Jackute J, Zemaitis M, Pranys D, et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer[J]. BMC Immunol, 2018, 19(1): 3. doi: 10.1186/s12865-018-0241-4
|
[14] |
Chen C, He W, Huang J, et al. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment[J]. Nat Commun, 2018, 9(1): 3826. doi: 10.1038/s41467-018-06152-x
|
[15] |
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795. doi: 10.1172/JCI59643
|
[16] |
Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape[J]. Curr Opin Immunol, 2014, 27: 16-25. doi: 10.1016/j.coi.2014.01.004
|
[17] |
Wang N, Wang S, Wang X, et al. Research trends in pharmacological modulation of tumor-associated macrophages[J]. Clin Transl Med, 2021, 11(1): e288.
|
[18] |
Harney AS, Arwert EN, Entenberg D, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA[J]. Cancer Discov, 2015, 5(9): 932-943. doi: 10.1158/2159-8290.CD-15-0012
|
[19] |
Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development[J]. J Clin Invest, 2007, 117(5): 1155-1166. doi: 10.1172/JCI31422
|
[20] |
Chen L, Li J, Wang F, et al. Tie2 Expression on Macrophages Is Required for Blood Vessel Reconstruction and Tumor Relapse after Chemotherapy[J]. Cancer Res, 2016, 76(23): 6828-6838. doi: 10.1158/0008-5472.CAN-16-1114
|
[21] |
Kessenbrock K, Plaks V, Werb Z. Werb, Matrix metallo-proteinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67. doi: 10.1016/j.cell.2010.03.015
|
[22] |
Giurisato E, Lonardi S, Telfer B, et al. Extracellular-Regulated Protein Kinase 5-Mediated Control of p21 Expression Promotes Macrophage Proliferation Associated with Tumor Growth and Metastasis[J]. Cancer Res, 2020, 80(16): 3319-3330. doi: 10.1158/0008-5472.CAN-19-2416
|
[23] |
Gil-Bernabé AM, Ferjancic S, Tlalka M, et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice[J]. Blood, 2012, 119(13): 3164-3175. doi: 10.1182/blood-2011-08-376426
|
[24] |
Eisenblaetter M, Flores-Borja F, Lee JJ, et al. Visualization of Tumor-Immune Interaction-Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment[J]. Theranostics, 2017, 7(9): 2392-2401. doi: 10.7150/thno.17138
|
[25] |
Zheng Y, Wang N, Wang S, et al. XIAOPI formula inhibits the pre-metastatic niche formation in breast cancer via suppressing TAMs/CXCL1 signaling[J]. Cell Commun Signal, 2020, 18(1): 48. doi: 10.1186/s12964-020-0520-6
|
[26] |
Zhang J, Li H, Wu Q, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth[J]. Redox Biol, 2019, 22: 101116. doi: 10.1016/j.redox.2019.101116
|
[27] |
Guo Z, Song J, Hao J, et al. M2 macrophages promote NSCLC metastasis by upregulating CRYAB[J]. Cell Death Dis, 2019, 10(6): 377. doi: 10.1038/s41419-019-1618-x
|
[28] |
Lu CS, Shiau AL, Su BH, et al. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer[J]. J Hematol Oncol, 2020, 13(1): 62. doi: 10.1186/s13045-020-00887-1
|
[29] |
Li Z, Feng C, Guo J, et al. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization[J]. Funct Integr Genomics, 2020, 20(1): 17-28. doi: 10.1007/s10142-019-00696-x
|
[30] |
Zhang Y, Wei Y, Jiang B, et al. Scavenger Receptor A1 Prevents Metastasis of Non-Small Cell Lung Cancer via Suppression of Macrophage Serum Amyloid A1[J]. Cancer Res, 2017, 77(7): 1586-1598. doi: 10.1158/0008-5472.CAN-16-1569
|
[31] |
Li C, Xue VW, Wang QM, et al. The Mincle/Syk/NF-κB Signaling Circuit Is Essential for Maintaining the Protumoral Activities of Tumor-Associated Macrophages[J]. Cancer Immunol Res, 2020, 8(8): 1004-1017. doi: 10.1158/2326-6066.CIR-19-0782
|
[32] |
Chen XJ, Wu S, Yan RM, et al. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer[J]. Mol Carcinog, 2019, 58(3): 388-397. doi: 10.1002/mc.22936
|
[33] |
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1): 58. doi: 10.1186/s13045-017-0430-2
|
[34] |
Li H, Huang N, Zhu W, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2[J]. BMC Cancer, 2018, 18(1): 579. doi: 10.1186/s12885-018-4299-4
|
[35] |
Hwang I, Kim JW, Ylaya K, et al. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients[J]. J Transl Med, 2020, 18(1): 443. doi: 10.1186/s12967-020-02618-z
|
[36] |
Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
|
[37] |
Obermajer N, Muthuswamy R, Lesnock J, et al. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells[J]. Blood, 2011, 118(20): 5498-5505.
|
[38] |
Schmid MC, Khan SQ, Kaneda MM, et al. Integrin CD11b activation drives anti-tumor innate immunity[J]. Nat Commun, 2018, 9(1): 5379.
|
[39] |
Tøndell A, Subbannayya Y, Wahl SGF, et al. Analysis of Intra-Tumoral Macrophages and T Cells in Non-Small Cell Lung Cancer (NSCLC) Indicates a Role for Immune Checkpoint and CD200-CD200R Interactions[J]. Cancers(Basel), 2021, 13(8): 1788.
|
[40] |
Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kγ is a molecular switch that controls immune suppression[J]. Nature, 2016, 539(7629): 437-442.
|
[41] |
La Fleur L, Botling J, He F, et al. Targeting MARCO and IL37R on Immunosuppressive Macrophages in Lung Cancer Blocks Regulatory T Cells and Supports Cytotoxic Lymphocyte Function[J]. Cancer Res, 2021, 81(4): 956-967.
|
[42] |
Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416.
|
[43] |
Prenen H, Mazzone M. Tumor-associated macrophages: a short compendium[J]. Cell Mol Life Sci, 2019, 76(8): 1447-1458.
|
[44] |
Huang WC, Kuo KT, Wang CH, et al. Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 180.
|
[45] |
Liu M, Tong Z, Ding C, et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer[J]. J Clin Invest, 2020, 130(4): 2081-2096.
|
[46] |
Li Y, Liu H, Zhao Y, et al. Tumor-associated macrophages (TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC)[J]. Thoracic Cancer, 2021, 12(20): 2698-2709.
|
[47] |
Liu Y, Zugazagoitia J, Ahmed FS, et al. Immune Cell PD-L1 Colocalizes with Macrophages and Is Associated with Outcome in PD-1 Pathway Blockade Therapy[J]. Clin Cancer Res, 2020, 26(4): 970-977.
|
[48] |
Gross DJ, Chintala NK, Vaghjiani RG, et al. Tumor and Tumor-Associated Macrophage Programmed Death-Ligand 1 Expression Is Associated With Adjuvant Chemotherapy Benefit in Lung Adenocarcinoma[J]. J Thorac Oncol, 2022, 17(1): 89-102.
|