Advanced Search
WU Wei, JING Doudou, CAO Li, PU Feifei, SHAO Zengwu. Current Status and Prospects of Immunotherapy for Osteosarcoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 721-726. DOI: 10.3971/j.issn.1000-8578.2022.21.1281
Citation: WU Wei, JING Doudou, CAO Li, PU Feifei, SHAO Zengwu. Current Status and Prospects of Immunotherapy for Osteosarcoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 721-726. DOI: 10.3971/j.issn.1000-8578.2022.21.1281

Current Status and Prospects of Immunotherapy for Osteosarcoma

Funding: 

National Natural Science Funding of China 81904231

China Postdoctoral Science Foundation 2020M672369

More Information
  • Corresponding author:

    PU Feifei, E-mail: pufeifeiemail@163.com

    SHAO Zengwu, E-mail: szwpro@163.com

  • Received Date: November 07, 2021
  • Revised Date: February 13, 2022
  • Available Online: January 12, 2024
  • Osteosarcoma is a malignant tumor with extreme invasiveness and metastasis as well as dismal prognosis. It is critical to rapidly find a unique therapy strategy capable of significantly improving the prognosis of osteosarcoma. Tumor immunotherapy has the potential to reawaken the immune system, restart and sustain the tumor-immune cycle in the body, resulting in the death of tumor cells. CD8+ CTL, CD4+ T cells, NK cells and NKT cells all play critical roles in tumor immunity, while humoral immunity may not only inhibit tumor growth but also enhance it. Researchers have devised various strategies to boost the immune system in recent years based on tumor immune response studies. This paper highlights and examines osteosarcoma immunotherapy from two perspectives: (1) boosting the response of patient's own immune system to the tumor; (2) exogenously improving the patient's immunological function.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. doi: 10.3322/caac.21442
    [2]
    Chen C, Xie L, Ren T, et al. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs[J]. Cancer Lett, 2021, 500: 1-10. doi: 10.1016/j.canlet.2020.12.024
    [3]
    Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Bone: An Updated Review[J]. Adv Anat Pathol, 2021, 28(3): 119-138. doi: 10.1097/PAP.0000000000000293
    [4]
    Meyers PA, Healey JH, Chou AJ, et al. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma[J]. Cancer, 2011, 117(8): 1736-1744. doi: 10.1002/cncr.25744
    [5]
    Haworth KB, Leddon JL, Chen CY, et al. Going back to class Ⅰ: MHC and immunotherapies for childhood cancer[J]. Pediatr Blood Cancer, 2015, 62(4): 571-576. doi: 10.1002/pbc.25359
    [6]
    Subleski JJ, Wiltrout RH, Weiss JM. Application of tissue-specific NK and NKT cell activity for tumor immunotherapy[J]. J Autoimmun, 33(3-4): 275-281.
    [7]
    Tan TT, Coussens LM. Humoral immunity, inflammation and cancer[J]. Curr Opin Immunol, 2007, 19(2): 209-216. doi: 10.1016/j.coi.2007.01.001
    [8]
    Gu Y, Liu Y, Fu L, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG[J]. Nat Med, 2019, 25(2): 312-322. doi: 10.1038/s41591-018-0309-y
    [9]
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. doi: 10.1056/NEJMoa1200694
    [10]
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570. doi: 10.1126/science.1203486
    [11]
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma[J]. N Engl J Med, 2015, 373(1): 23-34. doi: 10.1056/NEJMoa1504030
    [12]
    Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer[J]. N Engl J Med, 2018, 378(21): 1976-1986. doi: 10.1056/NEJMoa1716078
    [13]
    Lussier DM, O'Neill L, Nieves LM, et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions[J]. J Immunother, 2015, 38(3): 96-106. doi: 10.1097/CJI.0000000000000065
    [14]
    Liu X, He S, Wu H, et al. Blocking the PD-1/PD-L1 axis enhanced cisplatin chemotherapy in osteosarcoma in vitro and in vivo[J]. Environ Health Prev Med, 2019, 24(1): 79. doi: 10.1186/s12199-019-0835-3
    [15]
    Le Cesne A, Marec-Berard P, Blay JY, et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study[J]. Eur J Cancer, 2019, 119: 151-157. doi: 10.1016/j.ejca.2019.07.018
    [16]
    Xie L, Xu J, Sun X, et al. Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial[J]. J Immunother Cancer, 2020, 8(1): e000798. doi: 10.1136/jitc-2020-000798
    [17]
    Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial[J]. Lancet Oncol, 2017, 18(11): 1493-1501. doi: 10.1016/S1470-2045(17)30624-1
    [18]
    Shen JK, Cote GM, Choy E, et al. Programmed cell death ligand 1 expression in osteosarcoma[J]. Cancer Immunol Res, 2014, 2(7): 690-698. doi: 10.1158/2326-6066.CIR-13-0224
    [19]
    Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 Pathway Blockade: Combinations in the Clinic[J]. Front Oncol, 2014, 4: 385.
    [20]
    Hingorani P, Maas ML, Gustafson MP, et al. Increased CTLA-4(+) T cells and an increased ratio of monocytes with loss of class Ⅱ (CD14(+) HLA-DR(lo/neg)) found in aggressive pediatric sarcoma patients[J]. J Immunother Cancer, 2015, 3: 35. doi: 10.1186/s40425-015-0082-0
    [21]
    Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study[J]. Lancet Oncol, 2010, 11(2): 155-164. doi: 10.1016/S1470-2045(09)70334-1
    [22]
    Merchant MS, Wright M, Baird K, et al. Phase Ⅰ Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors[J]. Clin Cancer Res, 2016, 22(6): 1364-1370. doi: 10.1158/1078-0432.CCR-15-0491
    [23]
    Lussier DM, Johnson JL, Hingorani P, et al. Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21. doi: 10.1186/s40425-015-0067-z
    [24]
    Roden R, Wu TC. How will HPV vaccines affect cervical cancer?[J]. Nat Rev Cancer, 2006, 6(10): 753-763. doi: 10.1038/nrc1973
    [25]
    Dyson KA, Stover BD, Grippin A, et al. Emerging trends in immunotherapy for pediatric sarcomas[J]. J Hematol Oncol, 2019, 12(1): 78. doi: 10.1186/s13045-019-0756-z
    [26]
    Mackall CL, Rhee EH, Read EJ, et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas[J]. Clin Cancer Res 2008, 14(15): 4850-4858. doi: 10.1158/1078-0432.CCR-07-4065
    [27]
    Himoudi N, Wallace R, Parsley KL, et al. Lack of T-cell responses following autologous tumour lysate pulsed dendritic cell vaccination, in patients with relapsed osteosarcoma[J]. Clin Transl Oncol, 2012, 14(4): 271-279. doi: 10.1007/s12094-012-0795-1
    [28]
    Miwa S, Nishida H, Tanzawa Y, et al. Phase 1/2 study of immunotherapy with dendritic cells pulsed with autologous tumor lysate in patients with refractory bone and soft tissue sarcoma[J]. Cancer, 2017, 123(9): 1576-1584. doi: 10.1002/cncr.30606
    [29]
    Wu T, Dai Y. Tumor microenvironment and therapeutic response[J]. Cancer Lett, 2017, 387: 61-68. doi: 10.1016/j.canlet.2016.01.043
    [30]
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51. doi: 10.1016/j.cell.2010.03.014
    [31]
    Heymann MF, Lézot F, Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J]. Cell Immunol, 2019, 343: 103711. doi: 10.1016/j.cellimm.2017.10.011
    [32]
    Pu F, Chen F, Zhang Z, et al. Information Transfer and Biological Significance of Neoplastic Exosomes in the Tumor Microenvironment of Osteosarcoma[J]. Onco Targets Ther, 2020, 13: 8931-8940. doi: 10.2147/OTT.S266835
    [33]
    Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: Where do we go from here?[J]. Pediatr Blood Cancer, 2018, 65(9): e27227. doi: 10.1002/pbc.27227
    [34]
    Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer[J]. Ann Rev Immunol, 2015, 33: 445-474. doi: 10.1146/annurev-immunol-032414-112043
    [35]
    Wang Z, Wang Z, Li B, et al. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma[J]. Front Immunol, 2019, 10: 1114.
    [36]
    Pu F, Chen F, Liu J, et al. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application[J]. Onco Targets Ther, 2021, 14: 1501-1516. doi: 10.2147/OTT.S298958
    [37]
    Li A, Yi M, Qin S, et al. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 35.
    [38]
    Fuertes MB, Woo SR, Burnett B, et al. Type Ⅰ interferon response and innate immune sensing of cancer[J]. Trends Immunol, 2013, 34(2): 67-73. doi: 10.1016/j.it.2012.10.004
    [39]
    Jing W, McAllister D, Vonderhaar EP, et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models[J]. J Immunother Cancer, 2019, 7(1): 115. doi: 10.1186/s40425-019-0573-5
    [40]
    Ghaffari A, Peterson N, Khalaj K, et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer[J]. Br J Cancer, 2018, 119(4): 440-449.
    [41]
    Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety[J]. Pharmacol Ther, 2017, 178: 83-91.
    [42]
    Folkert IW, Devalaraja S, Linette GP, et al. Primary Bone Tumors: Challenges and Opportunities for CAR-T Therapies[J]. J Bone Miner Res, 2019, 34(10): 1780-1788.
    [43]
    Guedan S, Calderon H, Posey AD Jr, et al. Engineering and Design of Chimeric Antigen Receptors[J]. Mol Ther Methods Clin Dev, 2019, 12: 145-156.
    [44]
    Feinberg D, Paul B, Kang Y. The promise of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma[J]. Cell Immunol, 2019, 345: 103964.
    [45]
    Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia[J]. Leukemia, 2019, 33(12): 2854-2866.
    [46]
    Pehlivan KC, Duncan BB, Lee DW. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease[J]. Curr Hematol Malig Rep, 2018, 13(5): 396-406.
    [47]
    Potter JW, Jones KB, Barrott JJ. Sarcoma-The standard-bearer in cancer discovery[J]. Crit Rev Oncol Hematol, 2018, 126: 1-5.
    [48]
    Majzner RG, Theruvath JL, Nellan A, et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors[J]. Clin Cancer Res, 2019, 25(8): 2560-2574.
    [49]
    Théoleyre S, Mori K, Cherrier B, et al. Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma[J]. BMC Cancer, 2005, 5: 123.
    [50]
    Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2[J]. J Nat Cancer Inst, 1994, 86(15): 1159-1166.
    [51]
    Tang H, Wang Y, Chlewicki LK, et al. Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade[J]. Cancer Cell, 2016, 30(3): 500.
    [52]
    Sierro SR, Donda A, Perret R, et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity[J]. Eur J Immunol, 2011, 41(8): 2217-2228.
    [53]
    Kansara M, Teng MW, Smyth MJ, et al. Translational biology of osteosarcoma[J]. Nat Rev Cancer, 2014, 14(11): 722-735.
    [54]
    Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency[J]. Nat Commun, 2015, 6: 8940.

Catalog

    Figures(1)

    Article views (2188) PDF downloads (550) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return