Advanced Search
XIN Tong, SUN Yue, HU Jing. Research Progress on Relation Between BTBP1 and Tumor Progression and Treatment[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 715-720. DOI: 10.3971/j.issn.1000-8578.2022.21.1179
Citation: XIN Tong, SUN Yue, HU Jing. Research Progress on Relation Between BTBP1 and Tumor Progression and Treatment[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 715-720. DOI: 10.3971/j.issn.1000-8578.2022.21.1179

Research Progress on Relation Between BTBP1 and Tumor Progression and Treatment

Funding: 

National Natural Science Foundation of China 81972162

Natural Science Fund for Outstanding Youth of Heilongjiang Province YQ2019H026

Postdoctoral Scientific Research Staring Fund of Heilongjiang Province LBH-Q19042

Distinguished Youth Program of Harbin Medical University Cancer Hospital JCQN2020-01

More Information
  • Corresponding author:

    HU Jing, E-mail: hujing@ems.hrbmu.edu.cn

  • Received Date: October 17, 2021
  • Revised Date: February 13, 2022
  • Available Online: January 12, 2024
  • PTBP1, a widely-studied RNA binding protein, regulates mRNA splicing, translation, stability and localization. PTBP1 participates in a variety of ncRNA acting processes, affects tumorigenesis and tumor progression. In terms of tumor therapy, PTBP1 may act as a key factor to affect the target of targeted drugs and influence tumor resistance. This article reviews the role of PTBP1 in tumor and its research progress in tumor treatment.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Ontiveros RJ, Hernandez L, Nguyen H, et al. Identification and Characterization of a Minimal Functional Splicing Regulatory Protein, PTBP1[J]. Biochemistry, 2020, 59(50): 4766-4774. doi: 10.1021/acs.biochem.0c00664
    [2]
    Spellman R, Llorian M, Smith CW. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1[J]. Mol Cell, 2007, 27(3): 420-434. doi: 10.1016/j.molcel.2007.06.016
    [3]
    Kim W, Shin JC, Lee KH, et al. PTBP1 Positively Regulates the Translation of Circadian Clock Gene, Period1[J]. Int J Mol Sci, 2020, 21(18): 6921. doi: 10.3390/ijms21186921
    [4]
    Mitchell SA, Brown EC, Coldwell MJ, et al. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras[J]. Mol Cell Biol, 2001, 21(10): 3364-3374. doi: 10.1128/MCB.21.10.3364-3374.2001
    [5]
    Li B, Yen TS. Characterization of the nuclear export signal of polypyrimidine tract-binding protein[J]. J Biol Chem, 2002, 277(12): 10306-10314. doi: 10.1074/jbc.M109686200
    [6]
    Zhu W, Zhou BL, Rong LJ, et al. Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis[J]. J Zhejiang Univ Sci B, 2020, 21(2): 122-136. doi: 10.1631/jzus.B1900422
    [7]
    沈良华, 吴璐华, 张仙丽, 等. PTBP1通过EMT途径促进肝癌细胞的迁移与侵袭[J]. 中国病理生理杂志, 2019, 35(10): 1819-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201910013.htm

    Shen LH, Wu LH, Zhang XL, et al. PTBP1 promotes migration and invasion of liver cancer cells through EMT pathway[J]. Zhongguo Bing Li Sheng Li Za Zhi, 2019, 35(10): 1819-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201910013.htm
    [8]
    Shen L, Lei S, Zhang B, et al. Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells[J]. Theranostics, 2020, 10(13): 5719-5735. doi: 10.7150/thno.42010
    [9]
    He X, Arslan AD, Ho TT, et al. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties[J]. Oncogenesis, 2014, 3(1): e84. doi: 10.1038/oncsis.2013.47
    [10]
    Jiang J, Chen X, Liu H, et al. Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM[J]. Am J Cancer Res, 2017, 7(2): 245-259.
    [11]
    Xie R, Chen X, Chen Z, et al. Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM[J]. Cancer Lett, 2019, 449: 31-44. doi: 10.1016/j.canlet.2019.01.041
    [12]
    Calabretta S, Bielli P, Passacantilli I, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells[J]. Oncogene, 2016, 35(16): 2031-2039. doi: 10.1038/onc.2015.270
    [13]
    Tillmar L, Carlsson C, Welsh N. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence[J]. J Biol Chem, 2002, 277(2): 1099-1106. doi: 10.1074/jbc.M108340200
    [14]
    Hamilton BJ, Genin A, Cron RQ, et al. Delineation of a novel pathway that regulates CD154 (CD40 ligand) expression[J]. Mol Cell Biol, 2003, 23(2): 510-525. doi: 10.1128/MCB.23.2.510-525.2003
    [15]
    Wang MJ, Lin S. A region within the 5'-untranslated region of hypoxia-inducible factor-1alpha mRNA mediates its turnover in lung adenocarcinoma cells[J]. J Biol Chem, 2009, 284(52): 36500-36510. doi: 10.1074/jbc.M109.008904
    [16]
    Cho CY, Chung SY, Lin S, et al. PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis[J]. Sci Rep, 2019, 9(1): 16922. doi: 10.1038/s41598-019-53097-2
    [17]
    Cho S, Kim JH, Back SH, et al. Polypyrimidine tract-binding protein enhances the internal ribosomal entry site-dependent translation of p27Kip1 mRNA and modulates transition from G1 to S phase[J]. Mol Cell Biol, 2005, 25(4): 1283-1297. doi: 10.1128/MCB.25.4.1283-1297.2005
    [18]
    Galbán S, Kuwano Y, Pullmann JR, et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha[J]. Mol Cell Biol, 2008, 28(1): 93-107. doi: 10.1128/MCB.00973-07
    [19]
    Cui J, Placzek WJ. PTBP1 modulation of MCL1 expression regulates cellular apoptosis induced by antitubulin chemotherapeutics[J]. Cell Death Differ, 2016, 23(10): 1681-1690. doi: 10.1038/cdd.2016.60
    [20]
    Matus-nicodemos R, Vavassori S, Castro-faix M, et al. Polypyrimidine tract-binding protein is critical for the turnover and subcellular distribution of CD40 ligand mRNA in CD4+ T cells[J]. J Immunol, 2011, 186(4): 2164-2171. doi: 10.4049/jimmunol.1003236
    [21]
    Taniguchi K, Sakai M, Sugito N, et al. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors[J]. Oncotarget, 2016, 7(14): 18940-18952. doi: 10.18632/oncotarget.8005
    [22]
    Huan L, Guo T, Wu Y, et al. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response[J]. Mol Cancer, 2020, 19(1): 11. doi: 10.1186/s12943-019-1122-z
    [23]
    Zhu L, Wei Q, Qi Y, et al. PTB-AS, a Novel Natural Antisense Transcript, Promotes Glioma Progression by Improving PTBP1 mRNA Stability with SND1[J]. Mol Ther, 2019, 27(9): 1621-1637. doi: 10.1016/j.ymthe.2019.05.023
    [24]
    Taniguchi K, Sugito N, Shinohara H, et al. Organ-Specific MicroRNAs (MIR122, 137, and 206) Contribute to Tissue Characteristics and Carcinogenesis by Regulating Pyruvate Kinase M1/2 (PKM) Expression[J]. Int J Mol Sci, 2018, 19(5): 1276. doi: 10.3390/ijms19051276
    [25]
    Dahai Z, Daliang C, Famu L, et al. Lowly expressed lncRNA PVT1 suppresses proliferation and advances apoptosis of glioma cells through up-regulating microRNA-128-1-5p and inhibiting PTBP1[J]. Brain Res Bull, 2020, 163: 1-13. doi: 10.1016/j.brainresbull.2020.06.006
    [26]
    Zhang C, Zhang X, Wang J, et al. Lnc00462717 regulates the permeability of the blood-brain tumor barrier through interaction with PTBP1 to inhibit the miR-186-5p/Occludin signaling pathway[J]. FASEB J, 2020, 34(8): 9941-9958. doi: 10.1096/fj.202000045R
    [27]
    Li H, Shen S, Ruan X, et al. Biosynthetic CircRNA_001160 induced by PTBP1 regulates the permeability of BTB via the CircRNA_001160/miR-195-5p/ETV1 axis[J]. Cell Death Dis, 2019, 10(12): 960. doi: 10.1038/s41419-019-2191-z
    [28]
    Sheng J, He X, Yu W, et al. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma[J]. Cancer Lett, 2021, 503: 54-68. doi: 10.1016/j.canlet.2020.12.039
    [29]
    Li C, Zhao Z, Zhou Z, et al. Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis[J]. Cancer Chemother Pharmacol, 2016, 78(6): 1199-1207. doi: 10.1007/s00280-016-3178-4
    [30]
    Zhang Q, Xu L, Wang J, et al. KDM5C Expedites Lung Cancer Growth and Metastasis Through Epigenetic Regulation of MicroRNA-133a[J]. Onco Targets Ther, 2021, 14: 1187-1204. doi: 10.2147/OTT.S288799
    [31]
    Wu Z, Jiang H, Fu H, et al. A circGLIS3/miR-644a/PTBP1 positive feedback loop promotes the malignant biological progressions of non-small cell lung cancer[J]. Am J Cancer Res, 2021, 11(1): 108-122.
    [32]
    Zhang Q, Wu J, Zhang X, et al. Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade[J]. Aging (Albany NY), 2021, 13(5): 6804-6819.
    [33]
    Minami K, Taniguchi K, Sugito N, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells[J]. Oncotarget, 2017, 8(20): 33064-33077. doi: 10.18632/oncotarget.16524
    [34]
    Jiang D, Zhang Y, Yang L, et al. Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1[J]. J Cell Physiol, 2020, 235(2): 1711-1722. doi: 10.1002/jcp.29090
    [35]
    Xiao M, Liu J, Xiang L, et al. MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma[J]. Clin Transl Med, 2020, 10(8): e241.
    [36]
    Kang H, Heo S, Shin JJ, et al. A miR-194/PTBP1/CCND3 axis regulates tumor growth in human hepatocellular carcinoma[J]. J Pathol, 2019, 249(3): 395-408. doi: 10.1002/path.5325
    [37]
    Han M, Qian X, Cao H, et al. lncRNA ZNF649-AS1 Induces Trastuzumab Resistance by Promoting ATG5 Expression and Autophagy[J]. Mol Ther, 2020, 28(11): 2488-2502. doi: 10.1016/j.ymthe.2020.07.019
    [38]
    Zhang X, Zhou Y, Chen S, et al. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1[J]. Oncogenesis, 2019, 8(12): 73.
    [39]
    Zhang S, Wan H, Zhang X. LncRNA LHFPL3-AS1 contributes to tumorigenesis of melanoma stem cells via the miR-181a-5p/BCL2 pathway[J]. Cell Death Dis, 2020, 11(11): 950.
    [40]
    Ferraese R, Harshg RT, Yadva AK, et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression[J]. J Clin Invest, 2014, 124(7): 2861-2876.
    [41]
    Hwang SR, Murga-zamalloa C, Brown N, et al. Pyrimidine tract-binding protein 1 mediates pyruvate kinase M2-dependent phosphorylation of signal transducer and activator of transcription 3 and oncogenesis in anaplastic large cell lymphoma[J]. Lab Invest, 2017, 97(8): 962-970.
    [42]
    Wang X, Li Y, Fan Y, et al. PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy[J]. J Cell Physiol, 2018, 233(11): 8930-8939.
    [43]
    Coles LS, Bartley MA, Bert A, et al. A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization[J]. Eur J Biochem, 2004, 271(3): 648-660.
    [44]
    Cheng C, Xie Z, Li Y, et al. PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis[J]. Biomed Pharmacother, 2018, 108: 194-200.
    [45]
    Cheng C, Ding Q, Zhang Z, et al. PTBP1 modulates osteosarcoma chemoresistance to cisplatin by regulating the expression of the copper transporter SLC31A1[J]. J Cell Mol Med, 2020, 24(9): 5274-5289.
    [46]
    He X, Sheng J, Yu W, et al. LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma[J]. Cell Mol Neurobiol, 2021, 41(6): 1271-1284.
  • Related Articles

    [1]FU Yuting, YANG Wenjun, JIANG Binyuan. Advances of Non-coding RNA in Oral Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(12): 1296-1301. DOI: 10.3971/j.issn.1000-8578.2022.22.0498
    [2]GUO Xin, DU Hua, SHI Yingxu. Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142
    [3]YANG Junyuan, CAI Hongbing. Countermeasures and Mechanisms of Drug Resistance in Immunotherapy for Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 886-892. DOI: 10.3971/j.issn.1000-8578.2022.22.0162
    [4]LIU Ying, SU Jie, WANG Linhong. Role of Autophagy in Cisplatin Resistance of Retinoblastoma Y79 Cells and Its Mechanism[J]. Cancer Research on Prevention and Treatment, 2018, 45(8): 517-522. DOI: 10.3971/j.issn.1000-8578.2018.17.1438
    [5]HAO Lei, LI Qingxia. Research Progress on Reversing Breast Cancer Resistance to Endocrine Therapy[J]. Cancer Research on Prevention and Treatment, 2017, 44(11): 759-763. DOI: 10.3971/j.issn.1000-8578.2017.17.0535
    [6]YAN Xinxing, WANG Jing, ZHANG Wei, KE Xiaoyan. Expression of Toll-like Receptor 4 in Lymphoma Cell Lines and Its Effect on Cells Proliferation and Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2016, 43(6): 437-441. DOI: 10.3971/j.issn.1000-8578.2016.06.001
    [7]SHAN Wulin, DENG Fang, ZHANG Xiaolei, ZHANG Jing, HAN Dandan, WAN Lingling, LI Ming. Impact of miRNA-200c on Methotrexate Resistance of Non-small Cell Lung Cancer Cells A549[J]. Cancer Research on Prevention and Treatment, 2016, 43(5): 321-325. DOI: 10.3971/j.issn.1000-8578.2016.05.001
    [8]LIU Xiaodong, CHANG Qing, ZHAO Xiufang, YU Hang, HOU Yiju. Establishment of Docetaxel Resistant Variant of Human Lung Adenocarcinoma Cell Line A549/DTX and Its Resistance Mechanism[J]. Cancer Research on Prevention and Treatment, 2014, 41(06): 519-522. DOI: 10.3971/j.issn.1000-8578.2014.06.002
    [9]LU Hong, FAN Qing-xia, WANG Rui-lin. Apoptosis in Paclitaxel Resistant Cell Line Ec9706/P-1 of Human Esophageal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2010, 37(12): 1356-1359. DOI: 10.3971/j.issn.1000-8578.2010.12.006
    [10]ZENG Xiao-yong, YE Zhang-qun, YANG Wei-min, et al. Relation between the expressions of oncogene c-jun,c-fos and the expressions of γ-glutamylcysteine synthetase (γ-GCS) and glutathion(GSH) in drug-resistant human bladder cancer line[J]. Cancer Research on Prevention and Treatment, 2004, 31(01): 30-32. DOI: 10.3971/j.issn.1000-8578.1296

Catalog

    Tables(1)

    Article views (2107) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return