|
|
|
|
|
Advances in Tumor-associated Macrophages in Cancer Radiotherapy |
WU Zhuochao1,2, HUANG Zhaohui1,2
|
1. Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China; 2. Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China |
|
|
Abstract Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the tumor microenvironment. As a heterogenous cell population, TAMs usually affect tumor growth, metastasis, and therapeutic resistance. Currently, TAM has attracted wide attention as a promising therapy target for human cancers. As one of the basic treatments of malignant tumors, radiotherapy can regulate the phenotypes and functions of TAM. Meanwhile, TAM can affect the response of cancer cells to radiation. This paper reviews the research advances of TAM in cancer radiotherapy.
|
Keywords
Tumor-associated macrophage
Radiotherapy
Tumor microenvironment
Radiation dose
|
|
Fund:National Natural Science Foundation of China (No. 81672328) |
Issue Date: 14 September 2022
|
|
[1] Stary V, Wolf B, Unterleuthner D, et al. Short-course radiotherapy<br />
promotes pro-inflammatory macrophages via extracellular<br />
vesicles in human rectal cancer[J]. J Immunother Cancer, 2020,<br />
8(2): e000667.<br />
[2] Wunderlich R, Ernst A, R?del F, et al. Low and moderate doses<br />
of ionizing radiation up to 2 Gy modulate transmigration<br />
and chemotaxis of activated macrophages, provoke an antiinflammatory<br />
cytokine milieu, but do not impact upon viability and<br />
phagocytic function[J]. Clin Exp Immunol, 2015, 179(1): 50-61.<br />
[3] Tsai CS, Chen FH, Wang CC, et al. Macrophages from irradiated<br />
tumors express higher levels of iNOS, arginase-I and COX-2, and<br />
promote tumor growth[J]. Int J Radiat Oncol Biol Phys, 2007,<br />
68(2): 499-507.<br />
[4] Crittenden MR, Cottam B, Savage T, et al. Expression of NF-<br />
κB p50 in tumor stroma limits the control of tumors by radiation<br />
<p>
therapy[J]. PLoS One, 2012, 7(6): e39295.
</p>
<p>
[5] Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages:<br />
recent insights and therapies[J]. Front Oncol, 2020, 10: 188.<br />
[6] Yang Y, Guo Z, Chen W, et al. M2 macrophage-derived<br />
exosomes promote angiogenesis and growth of pancreatic ductal<br />
adenocarcinoma by targeting E2F2[J]. Mol Ther, 2021, 29(3):<br />
1226-1238.<br />
[7] Corliss BA, Azimi MS, Munson JM, et al. Macrophages:<br />
a n i n f l amma t o r y l i n k b e twe e n a n g i o g e n e s i s a n d<br />
lymphangiogenesis[J]. Microcirculation, 2016, 23(2): 95-121.<br />
[8] Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, et al.<br />
Podoplanin-expressing macrophages promote lymphangiogenesis<br />
and lymphoinvasion in breast cancer[J]. Cell Metab, 2019, 30(5):<br />
917-936. e10.<br />
[9] Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor<br />
metastasis: biological roles and clinical therapeutic applications[J].<br />
J Hematol Oncol, 2019, 12(1): 76.<br />
[10] Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers<br />
chemoresistance of colorectal cancer through macrophage-derived<br />
IL6[J]. Clin Cancer Res, 2017, 23(23): 7375-7387.<br />
[11] Malier M, Gharzeddine K, Laverriere MH, et al. Hypoxia drives<br />
dihydropyrimidine dehydrogenase expression in macrophages<br />
and confers chemoresistance in colorectal cancer[J]. Cancer Res,<br />
2021, 81(23): 5963-5976.<br />
[12] D'Errico G, Alonso-Nocelo M, Vallespinos M, et al. Tumorassociated<br />
macrophage-secreted 14-3-3zeta signals via AXL to<br />
promote pancreatic cancer chemoresistance[J]. Oncogene, 2019,<br />
38(27): 5469-5485.<br />
[13] Halbrook CJ, Pontious C, Kovalenko I, et al. Macrophage-released<br />
pyrimidines inhibit gemcitabine therapy in pancreatic cancer[J].<br />
Cell Metab, 2019, 29(6): 1390-1399. e6.<br />
[14] Binenbaum Y, Fridman E, Yaari Z, et al. Transfer of miRNA<br />
in macrophage-derived exosomes induces drug resistance<br />
in pancreatic adenocarcinoma[J]. Cancer Res, 2018, 78(18):<br />
5287-5299.<br />
[15] Zhu X, Shen H, Yin X, et al. Macrophages derived exosomes<br />
deliver miR-223 to epithelial ovarian cancer cells to elicit a<br />
chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019,<br />
38(1): 81.<br />
[16] Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs<br />
macrophage differentiation to an iNOS(+)/M1 phenotype that<br />
orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013,<br />
24(5): 589-602.<br />
[17] Hanna GG, Coyle VM, Prise KM. Immune modulation in<br />
advanced radiotherapies: targeting out-of-field effects[J]. Cancer<br />
Lett, 2015, 368(2): 246-251.<br />
[18] Zhu L, Hu S, Chen Q, et al. Macrophage contributes to radiationinduced<br />
anti-tumor abscopal effect on transplanted breast cancer<br />
by HMGB1/TNF-alpha signaling factors[J]. Int J Biol Sci, 2021,<br />
17(4): 926-941.<br />
[19] Bian Z, Shi L, Kidder K, et al. Intratumoral SIRPalpha-deficient<br />
macrophages activate tumor antigen-specific cytotoxic T cells<br />
under radiotherapy[J]. Nat Commun, 2021, 12(1): 3229.<br />
[20] Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Brachytherapy in a<br />
single dose of 10Gy as an "in situ" vaccination[J]. Int J Mol Sci,<br />
2020, 21(13): 4585.<br />
[21]Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor<br />
microenvironment as a "game changer" in cancer radiotherapy[J].<br />
Int J Mol Sci, 2019, 20(13): 3212.<br />
[22] Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to<br />
regulate vascular radiosensitivity in tumors: role of reoxygenation,<br />
free radicals, and stress granules[J]. Cancer Cell, 2004, 5(5):<br />
429-441.<br />
[23] Martinez-Zubiaurre I, Chalmers AJ, Hellevik T. Radiation-induced<br />
transformation of immunoregulatory networks in the tumor<br />
stroma[J]. Front Immunol, 2018, 9: 1679.<br />
[24] L?dermann B, Wunderlich R, Frey S, et al. Low dose ionising<br />
radiation leads to a NF-kappaB dependent decreased secretion of<br />
active IL-1beta by activated macrophages with a discontinuous<br />
dose-dependency[J]. Int J Radiat Biol, 2012, 88(10): 727-734.<br />
[25] Nowosielska EM, Cheda A, Wrembel-Wargocka J, et al. Effect of<br />
low doses of low-let radiation on the innate anti-tumor reactions<br />
in radioresistant and radiosensitive mice[J]. Dose Response, 2012,<br />
10(4): 500-515.<br />
[26] Genard G, Lucas S, Michiels C. Reprogramming of tumorassociated<br />
macrophages with anticancer therapies: radiotherapy<br />
versus chemo- and immunotherapies[J]. Front Immunol, 2017, 8:<br />
828.<br />
[27] Prakash H, Klug F, Nadella V, et al. Low doses of gamma<br />
irradiation potentially modifies immunosuppressive tumor<br />
microenvironment by retuning tumor-associated macrophages:<br />
lesson from insulinoma[J]. Carcinogenesis, 2016, 37(3): 301-313.<br />
[28] Meng Y, Beckett MA, Liang H, et al. Blockade of tumor necrosis<br />
factor alpha signaling in tumor-associated macrophages as a<br />
radiosensitizing strategy[J]. Cancer Res, 2010, 70(4): 1534-1543.<br />
[29] Jones KI, Tiersma J, Yuzhalin AE, et al. Radiation combined<br />
with macrophage depletion promotes adaptive immunity and<br />
potentiates checkpoint blockade[J]. EMBO Mol Med, 2018,<br />
10(12): e9342.<br />
[30] Okubo M, Kioi M, Nakashima H, et al. M2-polarized macrophages<br />
contribute to neovasculogenesis, leading to relapse of oral cancer<br />
following radiation[J]. Sci Rep, 2016, 6: 27548.<br />
[31] Shaikh S, Noshirwani A, West N, et al. Can macrophages within<br />
the microenvironment of locally invasive rectal cancers predict<br />
response to radiotherapy?[J]. Lancet, 2015, 385 Suppl 1: S87.<br />
[32] Zheng BW, Yang ML, Huang W, et al. Prognostic significance<br />
of tumor-associated macrophages in chondroblastoma and their<br />
association with response to adjuvant radiotherapy[J]. J Inflamm<br />
Res, 2021, 14: 1991-2005.<br />
[33] Balermpas P, R?del F, Liberz R, et al. Head and neck cancer<br />
relapse after chemoradiotherapy correlates with CD163+<br />
macrophages in primary tumour and CD11b+ myeloid cells in<br />
recurrences[J]. Br J Cancer, 2014, 111(8): 1509-1518.<br />
[34] Shiao SL, Ruffell B, DeNardo DG, et al. TH2-polarized CD4(+)<br />
T cells and macrophages limit efficacy of radiotherapy[J]. Cancer<br />
Immunol Res, 2015, 3(5): 518-525.<br />
[35] Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade<br />
stanches tumor-infiltrating myeloid cells and improves the<br />
efficacy of radiotherapy in prostate cancer[J]. Cancer Res, 2013,<br />
73(9): 2782-2794.<br />
[36] Almahariq MF, Quinn TJ, Kesarwani P, et al. Inhibition of colonystimulating<br />
factor-1 receptor enhances the efficacy of radiotherapy<br />
and reduces immune suppression in glioblastoma[J]. In Vivo,<br />
2021, 35(1): 119-129.<br />
[37] Zhang F, Sang Y, Chen D, et al. M2 macrophage-derived exosomal<br />
long non-coding RNA AGAP2-AS1 enhances radiotherapy<br />
immunity in lung cancer by reducing microRNA-296 and<br />
elevating NOTCH2[J]. Cell Death Dis, 2021, 12(5): 467.<br />
[38] Zhu L, Hu S, Chen Q, et al. Macrophage contributes to radiationinduced<br />
anti-tumor abscopal effect on transplanted breast cancer<br />
by HMGB1/TNF-α signaling factors[J]. Int J Biol Sci, 2021,<br />
17(4): 926-941.<br />
[39] Chiang CS, Fu SY, Wang SC, et al. Irradiation promotes an m2<br />
macrophage phenotype in tumor hypoxia[J]. Front Oncol, 2012, 2: 89.<br />
[40] Kioi M, Vogel H, Schultz G, et al. Inhibition of vasculogenesis,<br />
but not angiogenesis, prevents the recurrence of glioblastoma after<br />
irradiation in mice[J]. J Clin Invest, 2010, 120(3): 694-705.<br />
[41] Cai Z, Lim D, Liu G, et al. Valproic acid-like compounds enhance<br />
and prolong the radiotherapy effect on breast cancer by activating<br />
and maintaining anti-tumor immune function[J]. Front Immunol,<br />
2021, 12: 646384.
</p> |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|