Cancer Research on Prevention and Treatment    2022, Vol. 49 Issue (09) : 870-874     DOI: 10.3971/j.issn.1000-8578.2022.22.0042
|
Advances in Tumor-associated Macrophages in Cancer Radiotherapy
WU Zhuochao1,2, HUANG Zhaohui1,2
1. Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214062, China; 2. Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
Download: PDF(13245 KB)   ( 73 )   HTML ()
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the tumor microenvironment. As a heterogenous cell population, TAMs usually affect tumor growth, metastasis, and therapeutic resistance. Currently, TAM has attracted wide attention as a promising therapy target for human cancers. As one of the basic treatments of malignant tumors, radiotherapy can regulate the phenotypes and functions of TAM. Meanwhile, TAM can affect the response of cancer cells to radiation. This paper reviews the research advances of TAM in cancer radiotherapy.
Keywords Tumor-associated macrophage      Radiotherapy      Tumor microenvironment      Radiation dose     
ZTFLH:  R815.2  
  R730.55  
Fund:National Natural Science Foundation of China (No. 81672328)
Issue Date: 14 September 2022
 Cite this article:   
WU Zhuochao,HUANG Zhaohui. Advances in Tumor-associated Macrophages in Cancer Radiotherapy[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 870-874.
 URL:  
http://www.zlfzyj.com/EN/10.3971/j.issn.1000-8578.2022.22.0042
http://www.zlfzyj.com/EN/Y2022/V49/I09/870
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zhuochao
HUANG Zhaohui
[1] Stary V, Wolf B, Unterleuthner D, et al. Short-course radiotherapy<br /> promotes pro-inflammatory macrophages via extracellular<br /> vesicles in human rectal cancer[J]. J Immunother Cancer, 2020,<br /> 8(2): e000667.<br /> [2] Wunderlich R, Ernst A, R?del F, et al. Low and moderate doses<br /> of ionizing radiation up to 2 Gy modulate transmigration<br /> and chemotaxis of activated macrophages, provoke an antiinflammatory<br /> cytokine milieu, but do not impact upon viability and<br /> phagocytic function[J]. Clin Exp Immunol, 2015, 179(1): 50-61.<br /> [3] Tsai CS, Chen FH, Wang CC, et al. Macrophages from irradiated<br /> tumors express higher levels of iNOS, arginase-I and COX-2, and<br /> promote tumor growth[J]. Int J Radiat Oncol Biol Phys, 2007,<br /> 68(2): 499-507.<br /> [4] Crittenden MR, Cottam B, Savage T, et al. Expression of NF-<br /> κB p50 in tumor stroma limits the control of tumors by radiation<br /> <p> therapy[J]. PLoS One, 2012, 7(6): e39295. </p> <p> [5] Zhou J, Tang Z, Gao S, et al. Tumor-associated macrophages:<br /> recent insights and therapies[J]. Front Oncol, 2020, 10: 188.<br /> [6] Yang Y, Guo Z, Chen W, et al. M2 macrophage-derived<br /> exosomes promote angiogenesis and growth of pancreatic ductal<br /> adenocarcinoma by targeting E2F2[J]. Mol Ther, 2021, 29(3):<br /> 1226-1238.<br /> [7] Corliss BA, Azimi MS, Munson JM, et al. Macrophages:<br /> a n i n f l amma t o r y l i n k b e twe e n a n g i o g e n e s i s a n d<br /> lymphangiogenesis[J]. Microcirculation, 2016, 23(2): 95-121.<br /> [8] Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, et al.<br /> Podoplanin-expressing macrophages promote lymphangiogenesis<br /> and lymphoinvasion in breast cancer[J]. Cell Metab, 2019, 30(5):<br /> 917-936. e10.<br /> [9] Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor<br /> metastasis: biological roles and clinical therapeutic applications[J].<br /> J Hematol Oncol, 2019, 12(1): 76.<br /> [10] Yin Y, Yao S, Hu Y, et al. The immune-microenvironment confers<br /> chemoresistance of colorectal cancer through macrophage-derived<br /> IL6[J]. Clin Cancer Res, 2017, 23(23): 7375-7387.<br /> [11] Malier M, Gharzeddine K, Laverriere MH, et al. Hypoxia drives<br /> dihydropyrimidine dehydrogenase expr‍ession in macrophages<br /> and confers chemoresistance in colorectal cancer[J]. Cancer Res,<br /> 2021, 81(23): 5963-5976.<br /> [12] D'Errico G, Alonso-Nocelo M, Vallespinos M, et al. Tumorassociated<br /> macrophage-secreted 14-3-3zeta signals via AXL to<br /> promote pancreatic cancer chemoresistance[J]. Oncogene, 2019,<br /> 38(27): 5469-5485.<br /> [13] Halbrook CJ, Pontious C, Kovalenko I, et al. Macrophage-released<br /> pyrimidines inhibit gemcitabine therapy in pancreatic cancer[J].<br /> Cell Metab, 2019, 29(6): 1390-1399. e6.<br /> [14] Binenbaum Y, Fridman E, Yaari Z, et al. Transfer of miRNA<br /> in macrophage-derived exosomes induces drug resistance<br /> in pancreatic adenocarcinoma[J]. Cancer Res, 2018, 78(18):<br /> 5287-5299.<br /> [15] Zhu X, Shen H, Yin X, et al. Macrophages derived exosomes<br /> deliver miR-223 to epithelial ovarian cancer cells to elicit a<br /> chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019,<br /> 38(1): 81.<br /> [16] Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs<br /> macrophage differentiation to an iNOS(+)/M1 phenotype that<br /> orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013,<br /> 24(5): 589-602.<br /> [17] Hanna GG, Coyle VM, Prise KM. Immune modulation in<br /> advanced radiotherapies: targeting out-of-field effects[J]. Cancer<br /> Lett, 2015, 368(2): 246-251.<br /> [18] Zhu L, Hu S, Chen Q, et al. Macrophage contributes to radiationinduced<br /> anti-tumor abscopal effect on transplanted breast cancer<br /> by HMGB1/TNF-alpha signaling factors[J]. Int J Biol Sci, 2021,<br /> 17(4): 926-941.<br /> [19] Bian Z, Shi L, Kidder K, et al. Intratumoral SIRPalpha-deficient<br /> macrophages activate tumor antigen-specific cytotoxic T cells<br /> under radiotherapy[J]. Nat Commun, 2021, 12(1): 3229.<br /> [20] Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Brachytherapy in a<br /> single dose of 10Gy as an "in situ" vaccination[J]. Int J Mol Sci,<br /> 2020, 21(13): 4585.<br /> [21]Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor<br /> microenvironment as a "game changer" in cancer radiotherapy[J].<br /> Int J Mol Sci, 2019, 20(13): 3212.<br /> [22] Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to<br /> regulate vascular radiosensitivity in tumors: role of reoxygenation,<br /> free radicals, and stress granules[J]. Cancer Cell, 2004, 5(5):<br /> 429-441.<br /> [23] Martinez-Zubiaurre I, Chalmers AJ, Hellevik T. Radiation-induced<br /> transformation of immunoregulatory networks in the tumor<br /> stroma[J]. Front Immunol, 2018, 9: 1679.<br /> [24] L?dermann B, Wunderlich R, Frey S, et al. Low dose ionising<br /> radiation leads to a NF-kappaB dependent decreased secretion of<br /> active IL-1beta by activated macrophages with a discontinuous<br /> dose-dependency[J]. Int J Radiat Biol, 2012, 88(10): 727-734.<br /> [25] Nowosielska EM, Cheda A, Wrembel-Wargocka J, et al. Effect of<br /> low doses of low-let radiation on the innate anti-tumor reactions<br /> in radioresistant and radiosensitive mice[J]. Dose Response, 2012,<br /> 10(4): 500-515.<br /> [26] Genard G, Lucas S, Michiels C. Reprogramming of tumorassociated<br /> macrophages with anticancer therapies: radiotherapy<br /> versus chemo- and immunotherapies[J]. Front Immunol, 2017, 8:<br /> 828.<br /> [27] Prakash H, Klug F, Nadella V, et al. Low doses of gamma<br /> irradiation potentially modifies immunosuppressive tumor<br /> microenvironment by retuning tumor-associated macrophages:<br /> lesson from insulinoma[J]. Carcinogenesis, 2016, 37(3): 301-313.<br /> [28] Meng Y, Beckett MA, Liang H, et al. Blockade of tumor necrosis<br /> factor alpha signaling in tumor-associated macrophages as a<br /> radiosensitizing strategy[J]. Cancer Res, 2010, 70(4): 1534-1543.<br /> [29] Jones KI, Tiersma J, Yuzhalin AE, et al. Radiation combined<br /> with macrophage depletion promotes adaptive immunity and<br /> potentiates checkpoint blockade[J]. EMBO Mol Med, 2018,<br /> 10(12): e9342.<br /> [30] Okubo M, Kioi M, Nakashima H, et al. M2-polarized macrophages<br /> contribute to neovasculogenesis, leading to relapse of oral cancer<br /> following radiation[J]. Sci Rep, 2016, 6: 27548.<br /> [31] Shaikh S, Noshirwani A, West N, et al. Can macrophages within<br /> the microenvironment of locally invasive rectal cancers predict<br /> response to radiotherapy?[J]. Lancet, 2015, 385 Suppl 1: S87.<br /> [32] Zheng BW, Yang ML, Huang W, et al. Prognostic significance<br /> of tumor-associated macrophages in chondroblastoma and their<br /> association with response to adjuvant radiotherapy[J]. J Inflamm<br /> Res, 2021, 14: 1991-2005.<br /> [33] Balermpas P, R?del F, Liberz R, et al. Head and neck cancer<br /> relapse after chemoradiotherapy correlates with CD163+<br /> macrophages in primary tumour and CD11b+ myeloid cells in<br /> recurrences[J]. Br J Cancer, 2014, 111(8): 1509-1518.<br /> [34] Shiao SL, Ruffell B, DeNardo DG, et al. TH2-polarized CD4(+)<br /> T cells and macrophages limit efficacy of radiotherapy[J]. Cancer<br /> Immunol Res, 2015, 3(5): 518-525.<br /> [35] Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade<br /> stanches tumor-infiltrating myeloid cells and improves the<br /> efficacy of radiotherapy in prostate cancer[J]. Cancer Res, 2013,<br /> 73(9): 2782-2794.<br /> [36] Almahariq MF, Quinn TJ, Kesarwani P, et al. Inhibition of colonystimulating<br /> factor-1 receptor enhances the efficacy of radiotherapy<br /> and reduces immune suppression in glioblastoma[J]. In Vivo,<br /> 2021, 35(1): 119-129.<br /> [37] Zhang F, Sang Y, Chen D, et al. M2 macrophage-derived exosomal<br /> long non-coding RNA AGAP2-AS1 enhances radiotherapy<br /> immunity in lung cancer by reducing microRNA-296 and<br /> elevating NOTCH2[J]. Cell Death Dis, 2021, 12(5): 467.<br /> [38] Zhu L, Hu S, Chen Q, et al. Macrophage contributes to radiationinduced<br /> anti-tumor abscopal effect on transplanted breast cancer<br /> by HMGB1/TNF-α signaling factors[J]. Int J Biol Sci, 2021,<br /> 17(4): 926-941.<br /> [39] Chiang CS, Fu SY, Wang SC, et al. Irradiation promotes an m2<br /> macrophage phenotype in tumor hypoxia[J]. Front Oncol, 2012, 2: 89.<br /> [40] Kioi M, Vogel H, Schultz G, et al. Inhibition of vasculogenesis,<br /> but not angiogenesis, prevents the recurrence of glioblastoma after<br /> irradiation in mice[J]. J Clin Invest, 2010, 120(3): 694-705.<br /> [41] Cai Z, Lim D, Liu G, et al. Valproic acid-like compounds enhance<br /> and prolong the radiotherapy effect on breast cancer by activating<br /> and maintaining anti-tumor immune function[J]. Front Immunol,<br /> 2021, 12: 646384. </p>
Related articles from Frontiers Journals
[1] HAO Xiuxiu, FANG Wentao, GU Zhitao. Value of Postoperative Radiotherapy in Treatment of Completely Resected Thymic Tumors[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1010-1014.
[2] XIONG Yudi, ZHANG Xue, ZOU Ning, MOU Jingjing, LI Benhui, CHEN Weidong, LIAO Lingxia, ZHANG Jiucheng. A Prospective PhaseⅠ Clinical Study of Docetaxel with Concurrent Late-course Hyperfractionated Radiotherapy After Breast-conserving Surgery for Stage T1-T2 Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1054-1058.
[3] XU Nie, ZENG Yongjun. Interaction and Targeting Strategies of Colorectal Cancer Stem Cells and Tumor Microenvironment[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1077-1081.
[4] CHEN Zegang, WANG Yongbing, OU Tao. Neoadjuvant Treatment of Borderline Resectable Pancreatic Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 982-986.
[5] CAO Guangwen. Theoretical Update of Cancer Evo-Dev and Its Role in Targeted Immunotherapy for Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 747-755.
[6] CHEN Bojin, HU Xingyi, ZHAO Jingwen, ZHENG Aihong. Current Status of Immunotherapy in Neoadjuvant Therapy for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 727-732.
[7] WAN Xiaoying, ZHOU Songwen. Research Progress of M2-type Tumor-associated Macrophages in Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 733-737.
[8] SUN Junzhao, CHENG Gang, ZHANG Jianning. Advances in Treatment of Brain Metastasis from Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 522-527.
[9] JIN Long, XU Dameng, ZHOU Yuanyuan, YU Jiao. Application of 18F-FDG PET-CT Simulation Localization in Radiotherapy of Recurrent Abdominal and Pelvic Tumors[J]. Cancer Research on Prevention and Treatment, 2022, 49(05): 453-458.
[10] LI Yingying, LI Jinhu, LIU Xiaodong. Research Progress of Radiotherapy Combined with Immune Checkpoint Inhibitors in Treatment of Glioblastoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(05): 490-495.
[11] YIN Detao, ZHANG Pengyu. Comprehensive Treatment of Anaplastic Thyroid Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(02): 85-89.
[12] REN Gang, XIA Tingyi, WANG Yingjie. How to Exert Role of Radiotherapy in Treatment of Pancreatic Cancer[J]. Cancer Research on Prevention and Treatment, 2021, 48(11): 989-993.
[13] XIE Zhiwei, CAI Yixia, HUANG Jing. Research Progress of Carotid Artery Injury Caused by Radiotherapy for Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(11): 1041-1045.
[14] ZHU Kuikui, WU Gang. Clinical Research Progress of Radiotherapy Combined with Immune Checkpoint Inhibitors on NSCLC[J]. Cancer Research on Prevention and Treatment, 2021, 48(10): 916-921.
[15] XU Gang, BU Shanshan, WANG Xiushen, GE Hong. Correlation Between cyclin G1 Expression and Efficacy of Radiotherapy on Primary Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(10): 958-962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed