[1] Faustino AC, Viani GA, Hamamura AC. Patterns of recurrence
and outcomes of glioblastoma multiforme treated with
chemoradiation and adjuvant temozolomide[J]. Clinics(Sao
Paulo), 2020, 75: e1553.
[2] ?ledzińska P, Bebyn MG, Furtak J, et al. Prognostic and Predictive
Biomarkers in Gliomas[J]. Int J Mol Sci, 2021, 22(19): 10373.
[3] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO
Classification of Tumors of the Central Nervous System: a
summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251.
[4] Capper D, Jones DTW, Sill M, et al. DNA methylation-based
classification of central nervous system tumours[J]. Nature, 2018,
555(7697): 469-474.
[5] Na K, Kim HS, Shim HS, et al. Targeted next-generation
sequencing panel (TruSight Tumor 1 70) in diffuse glioma: a
single institutional experience of 1 35 cases[J]. J Neurooncol,
2019, 142(3): 445-454.
[6] Appay R, Dehais C, Maurage CA, et al. CDKN2A homozygous
deletion is a strong adverse prognosis factor in diffuse malignant
IDH-mutant gliomas[J]. Neuro Oncol, 2019, 21(12): 1519-1528.
[7] Lu VM, O’Connor KP, Shah AH, et al. The prognostic
significance of CDKN2A homozygous deletion in IDH-mutant
lower-grade glioma and glioblastoma: a systematic review of the
contemporary literature[J]. J Neurooncol, 2020, 148(2): 221-229.
[8] Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M
mutation in histone H3.3 defines clinically and biologically
distinct subgroups of pediatric diffuse intrinsic pontine gliomas[J].
Acta Neuropathol, 2012, 124(3): 439-447.
[9] Feldman AZ, Jennings LJ, Wadhwani NR, et al. The Essentials
of Molecular Testing in CNS Tumors: What to Order and How to
Integrate Results[J]. Curr Neurol Neurosci Rep, 2020, 20(7): 23.
[10] Louis DN, Wesseling P, Aldape K, et al. cIMPACT-NOW update
6: new entity and diagnostic principle recommendations of the
cIMPACT-Utrecht meeting on future CNS tumor classification
and grading[J]. Brain Pathol, 2020, 30(4): 844-856.
[11 ] Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating
Fields Plus Maintenance Temozolomide vs Maintenance
Temozolomide Alone on Survival in Patients With Glioblastoma:
A Randomized Clinical Trial[J]. JAMA, 2017, 318(23):
2306-2316.
[12] Chang E, Patel CB, Pohling C, et al. Tumor treating fields
increases membrane permeability in glioblastoma cells[J]. Cell
Death Discov, 2018, 4: 11 3.
[13] Schulz E, Kessler AF, Salvador E, et al. EXTH-02. The Blood
Brain Barrier (Bbb) Permeability Is Altered By Tumor Treating
Fields (Ttfields) In Vivo[J]. Neuro Oncol, 2019, 21(Suppl 6): vi82.
[14] Bokstein F, Blumenthal D, Limon D, et al. Concurrent Tumor
Treating Fields (TTFields) and Radiation Therapy for Newly
Diagnosed Glioblastoma: A Prospective Safety and Feasibility
Study[J]. Front Oncol, 2020, 10: 411 .
[15] Ghiaseddin A, Warren S, Allen A, et al. CTIM-04. Updates
For A Phase 2 Open-Labeled Study Of Pembrolizumab Plus
Ttfields Plus Maintenance Temozolomide In Patients With Newly
Diagnosed Glioblastoma (2-The-Top)[J]. Neuro Oncol, 2020,
22(Suppl 2): ii33.
[16] Taphoorn MJB, Dirven L, Kanner AA, et al. Influence of
Treatment With Tumor-Treating Fields on Health-Related Quality
of Life of Patients With Newly Diagnosed Glioblastoma: A
Secondary Analysis of a Randomized Clinical Trial[J]. JAMA
Oncol, 2018, 4(4): 495-504.
[17] Stupp R, Taillibert S, Kanner AA, et al. Maintenance Therapy
With Tumor-Treating Fields Plus Temozolomide vs Temozolomide
Alone for Glioblastoma: A Randomized Clinical Trial[J]. JAMA,
2015, 314(23): 2535-2543.
[18] Dono A, Mitra S, Shah M, et al. PTEN mutations predict benefit
from tumor treating fields (TTFields) therapy in patients with
recurrent glioblastoma[J]. J Neurooncol, 2021, 153(1): 153-160.
[19] Manea AJ, Ray SK. Regulation of autophagy as a therapeutic
option in glioblastoma[J]. Apoptosis, 2021, 26(11 -12): 574-599.
[20] Hong P, Kudulaiti N, Wu S, et al. Tumor treating fields:
a comprehensive overview of the underlying molecular
mechanism[J]. Expert Rev Mol Diagn, 2022, 22(1): 19-28.
[21] Shteingauz A, Porat Y, Voloshin T, et al. AMPK-dependent
autophagy upregulation serves as a survival mechanism in
response to Tumor Treating Fields (TTFields)[J]. Cell Death Dis,
2018, 9(11 ): 1074.
[22] Wu H, Yang L, Liu H, et al. Exploring the efficacy of tumor
electric field therapy against glioblastoma: An in vivo and in vitro
study[J]. CNS Neurosci Ther, 2021, 27(12): 1587-1604.
[23] Lin Y, Chen B. Case report: tumor-treating fields prolongs IDHmutant
anaplastic astrocytoma progression-free survival and
pathological evolution to glioblastoma[J]. Ann Transl Med, 2021,
9(24): 1804.
[24] G?tt H, Kiez S, Dohmen H, et al. Tumor treating fields therapy
is feasible and safe in a 3-year-old patient with diffuse midline
glioma H3K27M - a case report[J]. Childs Nerv Syst, 2022.
[Online ahead of print.]
[25] Ramón Y Cajal S, Sesé M, Capdevila C, et al. Clinical
implications of intratumor heterogeneity: challenges and
opportunities[J]. J Mol Med(Berl), 2020, 98(2): 161-177.
[26] Fuente MIDL, Colman H, Rosenthal M, et al. A phase Ⅰb/Ⅱ study
of olutasidenib in patients with relapsed/refractory IDH1 mutant
gliomas: Safety and efficacy as single agent and in combination
with azacitidine[J]. J Clin Oncol, 2020, 38(15_suppl): 2505.
[27] Yalon M, Rood B, MacDonald TJ, et al. A feasibility and efficacy
study of rapamycin and erlotinib for recurrent pediatric low-grade
glioma (LGG)[J]. Pediatr Blood Cancer, 2013, 60(1): 71-76.
[28] Ater JL, Xia C, Mazewski CM, et al. Nonrandomized comparison
of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive
low-grade glioma: A report from the Children’s Oncology
Group[J]. Cancer, 2016, 122(12): 1928-1936.
[29] Fangusaro J, Onar-Thomas A, Young Poussaint T, et al.
Selumetinib in paediatric patients with BRAF-aberrant or
neurofibromatosis type 1 -associated recurrent, refractory, or
progressive low-grade glioma: a multicentre, phase 2 trial[J].
Lancet Oncol, 2019, 20(7): 1011 -1022.
[30] Ullrich NJ, Prabhu SP, Reddy AT, et al. A phase Ⅱ study of
continuous oral mTOR inhibitor everolimus for recurrent,
radiographic-progressive neurofibromatosis type 1 -associated
pediatric low-grade glioma: a Neurofibromatosis Clinical Trials
Consortium study[J]. Neuro Oncol, 2020, 22(10): 1527-1535.
[31] Wahl M, Chang SM, Phi l l ips J J , e t al . Probing the
phosphatidylinositol 3-kinase/mammalian target of rapamycin
pathway in gliomas: A phase 2 study of everolimus for recurrent
adult low-grade gliomas[J]. Cancer, 2017, 123(23): 4631-4639.
[32] Rich JN, Reardon DA, Peery T, et al. Phase Ⅱ trial of gefitinib in
recurrent glioblastoma[J]. J Clin Oncol, 2004, 22(1): 133-142.
[33] Binder DC, Ladomersky E, Lenzen A, et al. Lessons learned from
rindopepimut treatment in patients with EGFRvIII-expressing
glioblastoma[J]. Transl Cancer Res, 2018, 7(Suppl 4): S510-S513.
[34] Weller M, Butowski N, Tran DD, et al. Rindopepimut with
temozolomide for patients with newly diagnosed, EGFRvIIIexpressing
glioblastoma (ACT IV): a randomised, doubleblind,
international phase 3 trial[J]. Lancet Oncol, 2017, 1 8(10):
1373-1385.
[35] Shaikh N, Brahmbhatt N, Kruser TJ, et al. Pleomorphic
xanthoastrocytoma: a brief review[J]. CNS Oncol, 2019, 8(3):
Cns39.
[36] Schreck KC, Guajardo A, Lin DDM, et al. Concurrent BRAF/
MEK Inhibitors in BRAF V600-Mutant High-Grade Primary
Brain Tumors[J]. J Natl Compr Canc Netw, 2018, 16(4): 343-347.
[37] Vuong HG, Altibi AMA, Duong UNP, et al. TERT promoter
mutation and its interaction with IDH mutations in glioma:
Combined TERT promoter and IDH mutations stratifies lowergrade
glioma into distinct survival subgroups-A meta-analysis of
aggregate data[J]. Crit Rev Oncol Hematol, 2017, 120: 1-9.
[38] Bai H, Bai S, Li X, et al. Establishment and Validation of the
Detection of TERT Promoter Mutations by Human Gliomas U251 Cell Lines[J]. Biomed Res Int, 2021, 2021: 3271395.
[39] Qin A, Musket A, Musich PR, et al. Receptor tyrosine kinases
as druggable targets in glioblastoma: Do signaling pathways
matter?[J]. Neurooncol Adv, 2021, 3(1): vdab133.
[40] Day EK, Sosale NG, Xiao A, et al. Glioblastoma Cell Resistance
to EGFR and MET Inhibition Can Be Overcome via Blockade
of FGFR-SPRY2 Bypass Signaling[J]. Cell Rep, 2020, 30(10):
3383-3396.
[41] Tamura R, Tanaka T, Akasaki Y, et al. The role of vascular
endothelial growth factor in the hypoxic and immunosuppressive
tumor microenvironment: perspectives for therapeutic
implications[J]. Med Oncol, 2019, 37(1): 2.
[42] van den Bent M J, Gao Y, Kerkhof M, et al. Changes in the EGFR
amplification and EGFRvⅢ expression between paired primary
and recurrent glioblastomas[J]. Neuro Oncol, 2015, 1 7(7):
935-941.
[43] Felsberg J, Hentschel B, Kaulich K, et al. Epidermal Growth
Factor Receptor Variant Ⅲ (EGFRvⅢ) Positivity in EGFRAmplified
Glioblastomas: Prognostic Role and Comparison
between Primary and Recurrent Tumors[J]. Clin Cancer Res,
2017, 23(22): 6846-6855.
[44] Santos PM, Butterfield LH. Dendritic Cell-Based Cancer
Vaccines[J]. J Immunol, 2018, 200(2): 443-449.
[45] Liau LM, Ashkan K, Tran DD, et al. First results on survival
from a large Phase 3 clinical trial of an autologous dendritic cell
vaccine in newly diagnosed glioblastoma[J]. J Transl Med, 2018,
16(1): 142.
[46] Yao Y, Luo F, Tang C, et al. Molecular subgroups and B7-H4
expression levels predict responses to dendritic cell vaccines in
glioblastoma: an exploratory randomized phase Ⅱ clinical trial[J].
Cancer Immunol Immunother, 2018, 67(11 ): 1777-1788.
[47] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year Survival
with Combined Nivolumab and Ipilimumab in Advanced
Melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
[48] Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab
plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer[J]. N
Engl J Med, 2019, 381(21): 2020-2031.
[49] Arrieta VA, Iwamoto F, Lukas RV, et al. Can patient selection
and neoadjuvant administration resuscitate PD-1 inhibitors for
glioblastoma?[J]. J Neurosurg, 2019, 132(5): 1667-1672.
[50] Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic
肿瘤防治研究2022年第49卷第6期 Cancer Res Prev Treat,2022,Vol.49,No.6 · ·
implications of hypermutation in gliomas[J]. Nature, 2020,
580(7804): 517-523.
[51] Reardon DA, Brandes AA, Omuro A, et al. Effect of Nivolumab
vs Bevacizumab in Patients With Recurrent Glioblastoma: The
CheckMate 1 43 Phase 3 Randomized Clinical Trial[J]. JAMA
Oncol, 2020, 6(7): 1003-1010.
[52] Nayak L, Molinaro AM, Peters K, et al. Randomized Phase Ⅱ
and Biomarker Study of Pembrolizumab plus Bevacizumab
versus Pembrolizumab Alone for Patients with Recurrent
Glioblastoma[J]. Clin Cancer Res, 2021, 27(4): 1048-1057.
[53] Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al.
Neoadjuvant nivolumab modi f i e s the tumor immune
microenvironment in resectable glioblastoma[J]. Nat Med, 2019,
25(3): 470-476.
[54] R?ver LK, Gevensleben H, Dietrich J, et al. PD-1 (PDCD1)
Promoter Methylation Is a Prognostic Factor in Patients
With Diffuse Lower-Grade Gliomas Harboring Isocitrate
Dehydrogenase (IDH) Mutations[J]. EBioMedicine, 2018, 28:
97-104.
[55] Weber R, Fleming V, Hu X, et al. Myeloid-Derived Suppressor
Cells Hinder the Anti-Cancer Activity of Immune Checkpoint
Inhibitors[J]. Front Immunol, 2018, 9: 1310.
[56] Mathewson ND, Ashenberg O, Tirosh I, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell
analysis[J]. Cell, 2021, 184(5): 1281-1298.
[57] Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells
overcome interpatient antigenic variability in glioblastoma[J].
Neuro Oncol, 2018, 20(4): 506-518.
[58] Ahmed N, Brawley V, Hegde M, et al. HER2-Specific Chimeric
Antigen Receptor-Modified Virus-Specific T Cells for Progressive
Glioblastoma: A Phase 1 Dose-Escalation Trial[J]. JAMA Oncol,
2017, 3(8): 1094-11 01.
[59] O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of
peripherally infused EGFRvⅢ-directed CAR T cells mediates
antigen loss and induces adaptive resistance in patients with
recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399):
eaaa0984.
[60] Tang X, Zhao S, Zhang Y, et al. B7-H3 as a Novel CAR-T
Therapeutic Target for Glioblastoma[J]. Mol Ther Oncolytics,
2019, 14: 279-287.
[61] Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma
after Chimeric Antigen Receptor T-Cell Therapy[J]. N Engl J
Med, 2016, 375(26): 2561-2569.
[62] Sevenich L. Turning ”Cold” Into ”Hot” Tumors-Opportunities
and Challenges for Radio-Immunotherapy Against Primary and
Metastatic Brain Cancers[J]. Front Oncol, 2019, 9: 163.
[63] Lhuillier C, Rudqvist NP, Elemento O, et al. Radiation therapy
and anti-tumor immunity: exposing immunogenic mutations to the
immune system[J]. Genome Med, 2019, 11 (1): 40.
[64] Dietrich J, Baryawno N, Nayyar N, et al. Bone marrow drives
central nervous system regeneration after radiation injury[J]. J
Clin Invest, 2018, 128(1): 281-293.
[65] Sterner RC, Sterner RM. CAR-T cell therapy: current limitations
and potential strategies[J]. Blood Cancer J, 2021, 11 (4): 69.
[66] Pan C, Zhai Y, Li G, et al. NK Cell-Based Immunotherapy and
Therapeutic Perspective in Gliomas[J]. Front Oncol, 2021, 11 :
7511 83.
[67] Eissa IR, Bustos-Villalobos I, Ichinose T, et al. The Current Status
and Future Prospects of Oncolytic Viruses in Clinical Trials
against Melanoma, Glioma, Pancreatic, and Breast Cancers[J].
Cancers (Basel), 2018, 10(10): 356.
[68] Balaji EV, Pai KSR. Stem Cells Delivered Oncolytic Virus to
Destroy Formidable Brain Tumor[J]. Stem Cell Rev Rep, 2022:
18(1): 395-397.
[69] Martinez-Quintanilla J, Seah I, Chua M, et al. Oncolytic viruses:
overcoming translational challenges[J]. J Clin Invest, 2019,
129(4): 1407-1418.
[70] King JL, Benhabbour SR. Glioblastoma Multiforme-A Look at the
Past and a Glance at the Future[J]. Pharmaceutics, 2021, 1 3(7):
1053.
[71] Saha D, Martuza RL, Rabkin SD. Macrophage Polarization
Contributes to Glioblastoma Eradication by Combination
Immunovirotherapy and Immune Checkpoint Blockade[J]. Cancer
Cell, 2017, 32(2): 253-267.
[72] Todo T, Martuza RL, Rabkin SD, et al. Oncolytic herpes simplex
virus vector with enhanced MHC classⅠpresentation and
tumor cell killing[J]. Proc Natl Acad Sci U S A, 2001, 98(11 ):
6396-6401.
[73] Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan:
progress in clinical trials and future perspectives[J]. Jpn J Clin
Oncol, 2019, 49(3): 201-209.
[74] Suryawanshi YR, Schulze AJ. Oncolytic Viruses for Malignant
Glioma: On the Verge of Success?[J]. Viruses, 2021, 13(7): 1294.
[75] Zhang DY, Dmello C, Chen L, et al. Ultrasound-mediated
Delivery of Paclitaxel for Glioma: A Comparative Study of
Distribution, Toxicity, and Efficacy of Albumin-bound Versus
Cremophor Formulations[J]. Clin Cancer Res, 2020, 26(2):
477-486.
[76] Beccaria K, Canney M, Bouchoux G, et al. Ultrasound-induced
blood-brain barrier disruption for the treatment of gliomas and
other primary CNS tumors[J]. Cancer Lett, 2020, 479: 13-22.
[77] Idbaih A, Canney M, Belin L, et al. Safety and Feasibility of
Repeated and Transient Blood-Brain Barrier Disruption by Pulsed
Ultrasound in Patients with Recurrent Glioblastoma[J]. Clin
Cancer Res, 2019, 25(13): 3793-3801.
[78] Alphandéry E. Nano-Therapies for Glioblastoma Treatment[J].
Cancers (Basel), 2020, 12(1): 242.
[79] Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR:
Strategies to enhance patient responses[J]. Adv Drug Deliv Rev,
2018, 130: 17-38.
[80] Wu W, Klockow JL, Mohanty S, et al. Theranostic nanoparticles
enhance the response of glioblastomas to radiation[J].
Nanotheranostics, 2019, 3(4): 299-310.
[81] Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, et al. Novel
Strategies for Nanoparticle-Based Radiosensitization in
Glioblastoma[J]. Int J Mol Sci, 2021, 22(18): 9673.
[82] Miller MA, Chandra R, Cuccarese MF, et al. Radiation therapy
primes tumors for nanotherapeutic delivery via macrophagemediated
vascular bursts[J]. Sci Transl Med, 2017, 9(392):
eaal0225.
|