Cancer Research on Prevention and Treatment    2022, Vol. 49 Issue (06) : 505-513     DOI: 10.3971/j.issn.1000-8578.2022.21.1514
Progress of Novel Treatment Options for Glioma
ZHANG Jianning, LIU Congwei
Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
Download: PDF(3636 KB)   ( 107 )   HTML ()
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Glioma is the most common primary malignant brain tumor with high recurrence and mortality rate. It is difficult to cure only relying on surgical resection, and comprehensive treatment options must be adopted. With the development of molecular and immunological research, novel therapy options represented by tumor-treating fields, targeted therapy and immunotherapy for glioma are gradually increasing, and some new progress has been made. This review will present the important achievements in the treatment of glioma in recent years and prospects for the future development.
Keywords Glioma      Targeted therapy      Immunotherapy      Tumor-treating fields     
ZTFLH:  R739.4  
Issue Date: 15 June 2022
 Cite this article:   
ZHANG Jianning,LIU Congwei. Progress of Novel Treatment Options for Glioma[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 505-513.
E-mail this article
E-mail Alert
Articles by authors
ZHANG Jianning
LIU Congwei
[1] Faustino AC, Viani GA, Hamamura AC. Patterns of recurrence
and outcomes of glioblastoma multiforme treated with
chemoradiation and adjuvant temozolomide[J]. Clinics(Sao
Paulo), 2020, 75: e1553.
[2] ?ledzińska P, Bebyn MG, Furtak J, et al. Prognostic and Predictive
Biomarkers in Gliomas[J]. Int J Mol Sci, 2021, 22(19): 10373.
[3] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO
Classification of Tumors of the Central Nervous System: a
summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251.
[4] Capper D, Jones DTW, Sill M, et al. DNA methylation-based
classification of central nervous system tumours[J]. Nature, 2018,
555(7697): 469-474.
[5] Na K, Kim HS, Shim HS, et al. Targeted next-generation
sequencing panel (TruSight Tumor 1 70) in diffuse glioma: a
single institutional experience of 1 35 cases[J]. J Neurooncol,
2019, 142(3): 445-454.
[6] Appay R, Dehais C, Maurage CA, et al. CDKN2A homozygous
deletion is a strong adverse prognosis factor in diffuse malignant
IDH-mutant gliomas[J]. Neuro Oncol, 2019, 21(12): 1519-1528.
[7] Lu VM, O’Connor KP, Shah AH, et al. The prognostic
significance of CDKN2A homozygous deletion in IDH-mutant
lower-grade glioma and glioblastoma: a systematic review of the
contemporary literature[J]. J Neurooncol, 2020, 148(2): 221-229.
[8] Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M
mutation in histone H3.3 defines clinically and biologically
distinct subgroups of pediatric diffuse intrinsic pontine gliomas[J].
Acta Neuropathol, 2012, 124(3): 439-447.
[9] Feldman AZ, Jennings LJ, Wadhwani NR, et al. The Essentials
of Molecular Testing in CNS Tumors: What to Order and How to
Integrate Results[J]. Curr Neurol Neurosci Rep, 2020, 20(7): 23.
[10] Louis DN, Wesseling P, Aldape K, et al. cIMPACT-NOW update
6: new entity and diagnostic principle recommendations of the
cIMPACT-Utrecht meeting on future CNS tumor classification
and grading[J]. Brain Pathol, 2020, 30(4): 844-856.
[11 ] Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating
Fields Plus Maintenance Temozolomide vs Maintenance
Temozolomide Alone on Survival in Patients With Glioblastoma:
A Randomized Clinical Trial[J]. JAMA, 2017, 318(23):
[12] Chang E, Patel CB, Pohling C, et al. Tumor treating fields
increases membrane permeability in glioblastoma cells[J]. Cell
Death Discov, 2018, 4: 11 3.
[13] Schulz E, Kessler AF, Salvador E, et al. EXTH-02. The Blood
Brain Barrier (Bbb) Permeability Is Altered By Tumor Treating
Fields (Ttfields) In Vivo[J]. Neuro Oncol, 2019, 21(Suppl 6): vi82.
[14] Bokstein F, Blumenthal D, Limon D, et al. Concurrent Tumor
Treating Fields (TTFields) and Radiation Therapy for Newly
Diagnosed Glioblastoma: A Prospective Safety and Feasibility
Study[J]. Front Oncol, 2020, 10: 411 .
[15] Ghiaseddin A, Warren S, Allen A, et al. CTIM-04. Updates
For A Phase 2 Open-Labeled Study Of Pembrolizumab Plus
Ttfields Plus Maintenance Temozolomide In Patients With Newly
Diagnosed Glioblastoma (2-The-Top)[J]. Neuro Oncol, 2020,
22(Suppl 2): ii33.
[16] Taphoorn MJB, Dirven L, Kanner AA, et al. Influence of
Treatment With Tumor-Treating Fields on Health-Related Quality
of Life of Patients With Newly Diagnosed Glioblastoma: A
Secondary Analysis of a Randomized Clinical Trial[J]. JAMA
Oncol, 2018, 4(4): 495-504.
[17] Stupp R, Taillibert S, Kanner AA, et al. Maintenance Therapy
With Tumor-Treating Fields Plus Temozolomide vs Temozolomide
Alone for Glioblastoma: A Randomized Clinical Trial[J]. JAMA,

2015, 314(23): 2535-2543.

[18] Dono A, Mitra S, Shah M, et al. PTEN mutations predict benefit
from tumor treating fields (TTFields) therapy in patients with
recurrent glioblastoma[J]. J Neurooncol, 2021, 153(1): 153-160.
[19] Manea AJ, Ray SK. Regulation of autophagy as a therapeutic
option in glioblastoma[J]. Apoptosis, 2021, 26(11 -12): 574-599.
[20] Hong P, Kudulaiti N, Wu S, et al. Tumor treating fields:
a comprehensive overview of the underlying molecular
mechanism[J]. Expert Rev Mol Diagn, 2022, 22(1): 19-28.
[21] Shteingauz A, Porat Y, Voloshin T, et al. AMPK-dependent
autophagy upregulation serves as a survival mechanism in
response to Tumor Treating Fields (TTFields)[J]. Cell Death Dis,
2018, 9(11 ): 1074.
[22] Wu H, Yang L, Liu H, et al. Exploring the efficacy of tumor
electric field therapy against glioblastoma: An in vivo and in vitro
study[J]. CNS Neurosci Ther, 2021, 27(12): 1587-1604.
[23] Lin Y, Chen B. Case report: tumor-treating fields prolongs IDHmutant
anaplastic astrocytoma progression-free survival and
pathological evolution to glioblastoma[J]. Ann Transl Med, 2021,
9(24): 1804.
[24] G?tt H, Kiez S, Dohmen H, et al. Tumor treating fields therapy
is feasible and safe in a 3-year-old patient with diffuse midline
glioma H3K27M - a case report[J]. Childs Nerv Syst, 2022.
[Online ahead of print.]
[25] Ramón Y Cajal S, Sesé M, Capdevila C, et al. Clinical
implications of intratumor heterogeneity: challenges and
opportunities[J]. J Mol Med(Berl), 2020, 98(2): 161-177.
[26] Fuente MIDL, Colman H, Rosenthal M, et al. A phase Ⅰb/Ⅱ study
of olutasidenib in patients with relapsed/refractory IDH1 mutant
gliomas: Safety and efficacy as single agent and in combination
with azacitidine[J]. J Clin Oncol, 2020, 38(15_suppl): 2505.
[27] Yalon M, Rood B, MacDonald TJ, et al. A feasibility and efficacy
study of rapamycin and erlotinib for recurrent pediatric low-grade
glioma (LGG)[J]. Pediatr Blood Cancer, 2013, 60(1): 71-76.
[28] Ater JL, Xia C, Mazewski CM, et al. Nonrandomized comparison
of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive
low-grade glioma: A report from the Children’s Oncology
Group[J]. Cancer, 2016, 122(12): 1928-1936.
[29] Fangusaro J, Onar-Thomas A, Young Poussaint T, et al.
Selumetinib in paediatric patients with BRAF-aberrant or
neurofibromatosis type 1 -associated recurrent, refractory, or
progressive low-grade glioma: a multicentre, phase 2 trial[J].
Lancet Oncol, 2019, 20(7): 1011 -1022.
[30] Ullrich NJ, Prabhu SP, Reddy AT, et al. A phase Ⅱ study of
continuous oral mTOR inhibitor everolimus for recurrent,
radiographic-progressive neurofibromatosis type 1 -associated
pediatric low-grade glioma: a Neurofibromatosis Clinical Trials
Consortium study[J]. Neuro Oncol, 2020, 22(10): 1527-1535.
[31] Wahl M, Chang SM, Phi l l ips J J , e t al . Probing the
phosphatidylinositol 3-kinase/mammalian target of rapamycin
pathway in gliomas: A phase 2 study of everolimus for recurrent
adult low-grade gliomas[J]. Cancer, 2017, 123(23): 4631-4639.
[32] Rich JN, Reardon DA, Peery T, et al. Phase Ⅱ trial of gefitinib in
recurrent glioblastoma[J]. J Clin Oncol, 2004, 22(1): 133-142.
[33] Binder DC, Ladomersky E, Lenzen A, et al. Lessons learned from
rindopepimut treatment in patients with EGFRvIII-expressing
glioblastoma[J]. Transl Cancer Res, 2018, 7(Suppl 4): S510-S513.
[34] Weller M, Butowski N, Tran DD, et al. Rindopepimut with
temozolomide for patients with newly diagnosed, EGFRvIIIexpressing
glioblastoma (ACT IV): a randomised, doubleblind,
international phase 3 trial[J]. Lancet Oncol, 2017, 1 8(10):
[35] Shaikh N, Brahmbhatt N, Kruser TJ, et al. Pleomorphic
xanthoastrocytoma: a brief review[J]. CNS Oncol, 2019, 8(3):
[36] Schreck KC, Guajardo A, Lin DDM, et al. Concurrent BRAF/
MEK Inhibitors in BRAF V600-Mutant High-Grade Primary
Brain Tumors[J]. J Natl Compr Canc Netw, 2018, 16(4): 343-347.
[37] Vuong HG, Altibi AMA, Duong UNP, et al. TERT promoter
mutation and its interaction with IDH mutations in glioma:
Combined TERT promoter and IDH mutations stratifies lowergrade
glioma into distinct survival subgroups-A meta-analysis of
aggregate data[J]. Crit Rev Oncol Hematol, 2017, 120: 1-9.
[38] Bai H, Bai S, Li X, et al. Establishment and Validation of the
Detection of TERT Promoter Mutations by Human Gliomas U251 Cell Lines[J]. Biomed Res Int, 2021, 2021: 3271395.
[39] Qin A, Musket A, Musich PR, et al. Receptor tyrosine kinases
as druggable targets in glioblastoma: Do signaling pathways
matter?[J]. Neurooncol Adv, 2021, 3(1): vdab133.
[40] Day EK, Sosale NG, Xiao A, et al. Glioblastoma Cell Resistance
to EGFR and MET Inhibition Can Be Overcome via Blockade
of FGFR-SPRY2 Bypass Signaling[J]. Cell Rep, 2020, 30(10):
[41] Tamura R, Tanaka T, Akasaki Y, et al. The role of vascular
endothelial growth factor in the hypoxic and immunosuppressive
tumor microenvironment: perspectives for therapeutic
implications[J]. Med Oncol, 2019, 37(1): 2.
[42] van den Bent M J, Gao Y, Kerkhof M, et al. Changes in the EGFR
amplification and EGFRvⅢ expr‍ession between paired primary
and recurrent glioblastomas[J]. Neuro Oncol, 2015, 1 7(7):
[43] Felsberg J, Hentschel B, Kaulich K, et al. Epidermal Growth
Factor Receptor Variant Ⅲ (EGFRvⅢ) Positivity in EGFRAmplified
Glioblastomas: Prognostic Role and Comparison
between Primary and Recurrent Tumors[J]. Clin Cancer Res,
2017, 23(22): 6846-6855.
[44] Santos PM, Butterfield LH. Dendritic Cell-Based Cancer
Vaccines[J]. J Immunol, 2018, 200(2): 443-449.
[45] Liau LM, Ashkan K, Tran DD, et al. First results on survival
from a large Phase 3 clinical trial of an autologous dendritic cell
vaccine in newly diagnosed glioblastoma[J]. J Transl Med, 2018,
16(1): 142.
[46] Yao Y, Luo F, Tang C, et al. Molecular subgroups and B7-H4
expr‍ession levels predict responses to dendritic cell vaccines in
glioblastoma: an exploratory randomized phase Ⅱ clinical trial[J].
Cancer Immunol Immunother, 2018, 67(11 ): 1777-1788.
[47] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year Survival
with Combined Nivolumab and Ipilimumab in Advanced
Melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
[48] Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab
plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer[J]. N
Engl J Med, 2019, 381(21): 2020-2031.
[49] Arrieta VA, Iwamoto F, Lukas RV, et al. Can patient selection
and neoadjuvant administration resuscitate PD-1 inhibitors for
glioblastoma?[J]. J Neurosurg, 2019, 132(5): 1667-1672.
[50] Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic
肿瘤防治研究2022年第49卷第6期 Cancer Res Prev Treat,2022,Vol.49,No.6 · ·
implications of hypermutation in gliomas[J]. Nature, 2020,
580(7804): 517-523.
[51] Reardon DA, Brandes AA, Omuro A, et al. Effect of Nivolumab
vs Bevacizumab in Patients With Recurrent Glioblastoma: The
CheckMate 1 43 Phase 3 Randomized Clinical Trial[J]. JAMA
Oncol, 2020, 6(7): 1003-1010.
[52] Nayak L, Molinaro AM, Peters K, et al. Randomized Phase Ⅱ
and Biomarker Study of Pembrolizumab plus Bevacizumab
versus Pembrolizumab Alone for Patients with Recurrent
Glioblastoma[J]. Clin Cancer Res, 2021, 27(4): 1048-1057.
[53] Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al.
Neoadjuvant nivolumab modi f i e s the tumor immune
microenvironment in resectable glioblastoma[J]. Nat Med, 2019,
25(3): 470-476.
[54] R?ver LK, Gevensleben H, Dietrich J, et al. PD-1 (PDCD1)
Promoter Methylation Is a Prognostic Factor in Patients
With Diffuse Lower-Grade Gliomas Harboring Isocitrate
Dehydrogenase (IDH) Mutations[J]. EBioMedicine, 2018, 28:
[55] Weber R, Fleming V, Hu X, et al. Myeloid-Derived Suppressor
Cells Hinder the Anti-Cancer Activity of Immune Checkpoint
Inhibitors[J]. Front Immunol, 2018, 9: 1310.
[56] Mathewson ND, Ashenberg O, Tirosh I, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell
analysis[J]. Cell, 2021, 184(5): 1281-1298.
[57] Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells
overcome interpatient antigenic variability in glioblastoma[J].
Neuro Oncol, 2018, 20(4): 506-518.
[58] Ahmed N, Brawley V, Hegde M, et al. HER2-Specific Chimeric
Antigen Receptor-Modified Virus-Specific T Cells for Progressive
Glioblastoma: A Phase 1 Dose-Escalation Trial[J]. JAMA Oncol,
2017, 3(8): 1094-11 01.
[59] O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of
peripherally infused EGFRvⅢ-directed CAR T cells mediates
antigen loss and induces adaptive resistance in patients with
recurrent glioblastoma[J]. Sci Transl Med, 2017, 9(399):
[60] Tang X, Zhao S, Zhang Y, et al. B7-H3 as a Novel CAR-T
Therapeutic Target for Glioblastoma[J]. Mol Ther Oncolytics,
2019, 14: 279-287.
[61] Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma
after Chimeric Antigen Receptor T-Cell Therapy[J]. N Engl J
Med, 2016, 375(26): 2561-2569.
[62] Sevenich L. Turning ”Cold” Into ”Hot” Tumors-Opportunities
and Challenges for Radio-Immunotherapy Against Primary and
Metastatic Brain Cancers[J]. Front Oncol, 2019, 9: 163.
[63] Lhuillier C, Rudqvist NP, Elemento O, et al. Radiation therapy
and anti-tumor immunity: exposing immunogenic mutations to the
immune system[J]. Genome Med, 2019, 11 (1): 40.
[64] Dietrich J, Baryawno N, Nayyar N, et al. Bone marrow drives
central nervous system regeneration after radiation injury[J]. J
Clin Invest, 2018, 128(1): 281-293.
[65] Sterner RC, Sterner RM. CAR-T cell therapy: current limitations
and potential strategies[J]. Blood Cancer J, 2021, 11 (4): 69.
[66] Pan C, Zhai Y, Li G, et al. NK Cell-Based Immunotherapy and
Therapeutic Perspective in Gliomas[J]. Front Oncol, 2021, 11 :
7511 83.
[67] Eissa IR, Bustos-Villalobos I, Ichinose T, et al. The Current Status
and Future Prospects of Oncolytic Viruses in Clinical Trials
against Melanoma, Glioma, Pancreatic, and Breast Cancers[J].
Cancers (Basel), 2018, 10(10): 356.
[68] Balaji EV, Pai KSR. Stem Cells Delivered Oncolytic Virus to
Destroy Formidable Brain Tumor[J]. Stem Cell Rev Rep, 2022:
18(1): 395-397.
[69] Martinez-Quintanilla J, Seah I, Chua M, et al. Oncolytic viruses:
overcoming translational challenges[J]. J Clin Invest, 2019,
129(4): 1407-1418.
[70] King JL, Benhabbour SR. Glioblastoma Multiforme-A Look at the
Past and a Glance at the Future[J]. Pharmaceutics, 2021, 1 3(7):
[71] Saha D, Martuza RL, Rabkin SD. Macrophage Polarization
Contributes to Glioblastoma Eradication by Combination
Immunovirotherapy and Immune Checkpoint Blockade[J]. Cancer
Cell, 2017, 32(2): 253-267.
[72] Todo T, Martuza RL, Rabkin SD, et al. Oncolytic herpes simplex
virus vector with enhanced MHC classⅠpresentation and
tumor cell killing[J]. Proc Natl Acad Sci U S A, 2001, 98(11 ):
[73] Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan:
progress in clinical trials and future perspectives[J]. Jpn J Clin
Oncol, 2019, 49(3): 201-209.
[74] Suryawanshi YR, Schulze AJ. Oncolytic Viruses for Malignant
Glioma: On the Verge of Success?[J]. Viruses, 2021, 13(7): 1294.
[75] Zhang DY, Dmello C, Chen L, et al. Ultrasound-mediated
Delivery of Paclitaxel for Glioma: A Comparative Study of
Distribution, Toxicity, and Efficacy of Albumin-bound Versus
Cremophor Formulations[J]. Clin Cancer Res, 2020, 26(2):
[76] Beccaria K, Canney M, Bouchoux G, et al. Ultrasound-induced
blood-brain barrier disruption for the treatment of gliomas and
other primary CNS tumors[J]. Cancer Lett, 2020, 479: 13-22.
[77] Idbaih A, Canney M, Belin L, et al. Safety and Feasibility of
Repeated and Transient Blood-Brain Barrier Disruption by Pulsed
Ultrasound in Patients with Recurrent Glioblastoma[J]. Clin
Cancer Res, 2019, 25(13): 3793-3801.
[78] Alphandéry E. Nano-Therapies for Glioblastoma Treatment[J].
Cancers (Basel), 2020, 12(1): 242.
[79] Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR:
Strategies to enhance patient responses[J]. Adv Drug Deliv Rev,
2018, 130: 17-38.
[80] Wu W, Klockow JL, Mohanty S, et al. Theranostic nanoparticles
enhance the response of glioblastomas to radiation[J].
Nanotheranostics, 2019, 3(4): 299-310.
[81] Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, et al. Novel
Strategies for Nanoparticle-Based Radiosensitization in
Glioblastoma[J]. Int J Mol Sci, 2021, 22(18): 9673.
[82] Miller MA, Chandra R, Cuccarese MF, et al. Radiation therapy
primes tumors for nanotherapeutic delivery via macrophagemediated
vascular bursts[J]. Sci Transl Med, 2017, 9(392):

Related articles from Frontiers Journals
[1] YANG Junyuan, CAI Hongbing. Countermeasures and Mechanisms of Drug Resistance in Immunotherapy for Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 886-892.
[2] YIN Zhucheng, LIANG Xinjun. Research Progress on Combined Immunotherapy for Microsatellite Stable Colorectal Cancer#br#[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 977-981.
[3] CAO Guangwen. Theoretical Update of Cancer Evo-Dev and Its Role in Targeted Immunotherapy for Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 747-755.
[4] KANG Yikun, YUAN Peng. Advances in Treatment of Triple Negative Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 812-819.
[5] YIN Zhucheng, LIANG Xinjun. Research Progress on Hyperthermia and Anti-Tumor Immunity[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 827-831.
[6] XIA Siyu, ZHAO Zitong, LI Li. Correlation Between STK11 Gene Mutation and Immunotherapy of Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 850-854.
[7] CHEN Yarui, WANG Jiangtao, GUAN Quanlin, JI Wei, JIAO Fuzhi. Research Progress of Antibody-drug Conjugates in Advanced Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 855-860.
[8] CHEN Weichang, SHI Tongguo, ZHU Jinghan, SUN Linqing, LI Juntao. Progress on Immunotherapy of Gastrointestinal Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 639-643.
[9] JIN Tongtong, ZHOU Chuan, WANG Chao, DA Zijian, ZHOU Fenghai, . Research Hotspots and Frontiers of Immunotherapy for Prostate Cancer: A Visual Analysis[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 667-674.
[10] WU Wei, JING Doudou, CAO Li, PU Feifei, SHAO Zengwu. Current Status and Prospects of Immunotherapy for Osteosarcoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 721-726.
[11] CHEN Bojin, HU Xingyi, ZHAO Jingwen, ZHENG Aihong. Current Status of Immunotherapy in Neoadjuvant Therapy for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 727-732.
[12] JIA Muyuan, LI Ze, LIU Yuyang, LIU Jialin, ZHENG Xiaoque, BAI Yunjuan, CHEN Ling. Progress in Multidisciplinary Diagnosis and Treatment of Familial Brain Tumors[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 514-521.
[13] SUN Junzhao, CHENG Gang, ZHANG Jianning. Advances in Treatment of Brain Metastasis from Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 522-527.
[14] ZHANG Yu, HE Kunyu, FENG Shiyu. Current Progress in Treatment of Glioma[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 528-534.
[15] LI Yuxin, JIN Feng, . Immune Checkpoint PD-1-based Mechanisms of Tumor Immune Resistance and Strategies for Re-treatment After Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 546-551.
Full text