[1] van de Donk NWCJ, Pawlyn C, Yong KL. Multiple Myeloma[J].
Lancet, 2021, 397(10272): 410-427.
[2] Moreau P. HowⅠTreat Myeloma with New Agents[J]. Blood,
2017, 130(13): 1507-1513.
[3] Shah UA, Mailankody S. Emerging Immunotherapies in Multiple
Myeloma[J]. BMJ, 2020, 370: m3176.
[4] Holthof LC, Mutis T. Challenges for Immunotherapy in Multiple
Myeloma: Bone Marrow Microenvironment-Mediated Immune
Suppression and Immune Resistance[J]. Cancers (Basel), 2020,
12(4): 998.
[5] García-Ortiz A, Rodríguez-García Y, Encinas J, et al. The Role of
Tumor Microenvironment in Multiple Myeloma Development and
Progression[J]. Cancers (Basel), 2021, 13(2): 217.
[6] Nakamura K, Smyth MJ, Martinet L. Cancer Immunoediting and
Immune Dysregulation in Multiple Myeloma[J]. Blood, 2020,
136(24): 2731-2740.
[7] Rajkumar SV, Landgren O, Mateos MV. Smoldering Multiple
Myeloma[J]. Blood, 2015, 125(20): 3069-3075.
[8] Dhodapkar MV. MGUS to Myeloma: A Mysterious Gammopathy
of Underexplored Significance[J]. Blood, 2016, 128(23):
2599-2606.
[9] Mouhieddine TH, Weeks LD, Ghobrial IM. Monoclonal
Gammopathy of Undetermined Significance[J]. Blood, 2019,
133(23): 2484-2494.
[10] Bailur JK, McCachren SS, Doxie DB, et al. Early Alterations in
Stem-like/resident T Cells, Innate and Myeloid Cells in the Bone
Marrow in Preneoplastic Gammopathy[J]. JCI Insight, 2019,
5(11): e127807.
[11] Dhodapkar MV, Dhodapkar KM. Tissue-resident Memory-like
T Cells in Tumor Immunity: Clinical implications[J]. Semin
Immunol, 2020, 49: 101415.
[12] Zelle-Rieser C, Thangavadivel S, Biedermann R, et al. T cells
in Multiple Myeloma Display Features of Exhaustion and
Senescence at the Tumor Site[J]. J Hematol Oncol, 2016, 9(1):
116.
[13] Botta C, Mendicino F, Martino EA, et al. Mechanisms of Immune
Evasion in Multiple Myeloma: Open Questions and Therapeutic
Opportunities[J]. Cancers (Basel), 2021, 13(13): 3213.
[14] Lope s R, Ca e t ano J , Fe r r e i r a B, e t al . The Immune
Microenvironment in Multiple Myeloma: Friend or Foe?[J].
Cancers (Basel), 2021, 13(4): 625.
[15] Janker L, Mayer RL, Bileck A, et al. Metabolic, Anti-apoptotic
and Immune Evasion Strategies of Primary Human Myeloma
Cells Indicate Adaptations to Hypoxia[J]. Mol Cell Proteomics,
2019, 18(5): 936-953.
[16] Wu S, Kuang H, Ke J, et al. Metabolic Reprogramming Induces
Immune Cell Dysfunction in the Tumor Microenvironment of
Multiple Myeloma[J]. Front Oncol, 2021, 10: 591342.
[17] McCachren SS, Dhodapkar KM, Dhodapkar MV. Co-evolution
of Immune Response in Multiple Myeloma: Implications for
Immune Prevention[J]. Front Immunol, 2021, 12: 632564.
[18] Tamura H, Ishibashi M, Sunakawa-Kii M, et al. PD-L1-PD-1
Pathway in the Pathophysiology of Multiple Myeloma[J]. Cancers
(Basel), 2020, 12(4): 924.
[19] Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting:
Integrating Immunity's Roles in Cancer Suppression and
Promotion[J]. Science, 2011, 331(6024): 1565-1570.
[20] Guillerey C, Ferrari de Andrade L, Vuckovic S, et al.
Immunosurveillance and Therapy of Multiple Myeloma Are
CD226 Dependent[J]. J Clin Invest, 2015, 125(5): 2077-2089.
[21] Minnie SA, Kuns RD, Gartlan KH, et al. Myeloma Escape After
Stem Cell Transplantation Is A Consequence of T-cell Exhaustion
and Is Prevented by TIGIT Blockade[J]. Blood, 2018, 132(16):
1675-1688.
[22] Goodyear OC, Pratt G, McLarnon A, et al. Differential Pattern
of CD4+ and CD8+ T-cell Immunity to MAGE-A1/A2/A3
in Patients with Monoclonal Gammopathy of Undetermined
Significance (MGUS) and Multiple Myeloma[J]. Blood, 2008,
112(8): 3362-3372.
[23] Yamamoto L, Amodio N, Gulla A, et al. Harnessing the
Immune System Against Multiple Myeloma: Challenges and
Opportunities[J]. Front Oncol, 2021, 10: 606368.
[24] van de Donk NWCJ, Usmani SZ. CD38 Antibodies in Multiple
Myeloma: Mechanisms of Action and Modes of Resistance[J].
Front Immunol, 2018, 9: 2134.
[25] Romano A, Storti P, Marchica V, et al. Mechanisms of Action of
the New Antibodies in Use in Multiple Myeloma[J]. Front Oncol,
2021, 11: 684561.
[26] Nishida H. Rapid Progress in Immunotherapies for Multiple
Myeloma: An Updated Comprehensive Review[J]. Cancers
(Basel), 2021, 13(11): 2712.
[27] Minnie SA, Hill GR. Immunotherapy of Multiple Myeloma[J]. J
Clin Invest, 2020, 130(4): 1565-1575.
[28] Sperling AS, Anderson KC. Facts and Hopes in Multiple Myeloma
Immunotherapy[J]. Clin Cancer Res, 2021, 27(16): 4468-4477.
[29] Franssen LE, Stege CAM, Zweegman S, et al. Resistance
Mechanisms Towards CD38-Directed Antibody Therapy in
Multiple Myeloma[J]. J Clin Med, 2020, 9(4):1195.
[30] D'Agostino M, Raje N. Anti-BCMA CAR T-cell Therapy in
Multiple Myeloma:Can We Do Better?[J]. Leukemia, 2020, 34(1):
21-34.
[31] Kawano Y, Roccaro AM, Ghobrial IM, et al. Multiple Myeloma
and the Immune Microenvironment[J]. Curr Cancer Drug Targets,
2017, 17(9): 806-818.
[32] Manier S, Salem KZ, Park J, et al. Genomic Complexity of
Multiple Myeloma and Its Clinical Cmplications[J]. Nat Rev Clin
Oncol, 2017, 14(2): 100-113.
|