Cancer Research on Prevention and Treatment    2022, Vol. 49 Issue (05) : 384-389     DOI: 10.3971/j.issn.1000-8578.2022.21.1416
|
Research Advances on Application of 18F-FDG PET/CT in Clinical Diagnosis and Treatment of Hepatocellular Carcinoma
XU Shasha, HAN Xingmin
Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou 450052, China
Download: PDF(3595 KB)   ( 43 )   HTML ()
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hepatocellular carcinoma (HCC) has high mortality, low early diagnosis rate, relatively poor treatment outcomes and prognosis. 18F-FDG PET/CT has an important application value on the detection of HCC metastasis, early recurrence and treatment prognosis. This paper summarizes and reviews the research progress on the application of 18F-FDG PET/CT in HCC diagnosis, liver transplantation, surgical resection and local ablation, to provide references for clinicians to make rational use of 18F-FDG PET/CT imaging technology in accurate diagnosis and treatment of HCC.
Keywords Hepatocellular carcinoma      18F-FDG PET/CT      Diagnosis      Prognosis     
ZTFLH:  R445.6  
  R735.7  
Fund:National Natural Science Foundation of China (No. 82171983)
Issue Date: 17 May 2022
 Cite this article:   
XU Shasha,HAN Xingmin. Research Advances on Application of 18F-FDG PET/CT in Clinical Diagnosis and Treatment of Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(05): 384-389.
 URL:  
http://www.zlfzyj.com/EN/10.3971/j.issn.1000-8578.2022.21.1416
http://www.zlfzyj.com/EN/Y2022/V49/I05/384
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Shasha
HAN Xingmin
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):
209-249.
[2] Zhou M, Wang H, Zeng X. Mortality, morbidity, and risk factors
in China and its provinces, 1990-2017: a systematic analysis
for the Global Burden of Disease Study 2017[J]. Lancet, 2019,
396(10204): 1145-1158.
[3] Kulik L, El-Serag HB. Epidemiology and Management of
Hepatocellular Carcinoma[J]. Gastroenterology, 2019, 156(2):
477-491. e1.
[4] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗
指南(2022年版)[J]. 肿瘤防治研究, 2022, 49(3): 251-276.
[National Health Commission of the People’s Republic of China.
Standardization for diagnosis and treatment of primary hepatic
carcinoma[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(3): 251-276.]
[5] Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma[J].

Lancet, 2012, 379(9822): 1245-1255.

[6] Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis
of hepatocellular carcinoma: A systematic review and metaanalysis[
J]. Hepatology, 2018, 67(1): 401-421.
[7] Farwell MD, Pryma DA, Mankoff DA. PET/CT Imaging in
Cancer: Current Applications and Future Directions[J]. Cancer,
2014, 120(22): 3433-3445.
[8] Tsurusaki M, Okada M, Kuroda H, et al. Clinical application
of 18F-fluorodeoxyglucose positron emission tomography for
assessment and evaluation after therapy for malignant hepatic
tumor[J]. J Gastroenterol, 2014, 49(1): 46-56.
[9] Gündo?an C, Ergül N, ?ak?r MS, et al. 68Ga-PSMA PET/
CT Versus 18F-FDG PET/CT for Imaging of Hepatocellular
Carcinoma[J]. Mol Imaging Radionucl Ther, 2021, 30(2): 79-85.
[10] Abouzied MM, Alhinti N, AlMuhaideb A, et al. Extrahepatic
metastases from hepatocellular carcinoma: multimodality image
evaluation[J]. Nucl Med Commun, 2021, 42(6): 583-591.
[11] Ayuso C, Rimola J, Vilana R, et al. Diagnosis and staging of
hepatocellular carcinoma (HCC): Current guidelines[J]. Eur J
Radiol, 2018, 101: 72-81.
[12] Kwee SA, Wong LL, Hernandez BY, et al. Chronic Liver
Disease and the Detection of Hepatocellular Carcinoma by
18F fluorocholine PET/CT[J]. Diagnostics (Basel), 2015, 5(2):
189-199.
[13] Castilla-Lièvre MA, Franco D, Gervais P, et al. Diagnostic value
of combining 11C-choline and 18F-FDG PET/CT in hepatocellular
carcinoma[J]. Eur J Nucl Med Mol Imaging, 2016, 43(5):
852-859.
[14] ?elebi F, Yaghouti K, Cindil E, et al. The Role of 18F-FDG PET/
MRI in the Assessment of Primary Intrahepatic Neoplasms[J].
Acad Radiol, 2021, 28(2): 189-198.
[15] Sharma B, Martin A, Zerizer I. Positron Emission Tomography-
Computed Tomography in Liver Imaging[J]. Semin Ultrasound
CT MR, 2013, 34(1): 66-80.
[16] Lee JE, Jang JY, Jeong SW, et al. Diagnostic value for
extrahepatic metastases of hepatocellular carcinoma in positron
emission tomography/computed tomography scan[J]. World J
Gastroenterol, 2012, 18(23): 2979-2987.
[17] Kim YK, Lee KW, Cho SY, et al. Usefulness 18F-FDG positron
emission tomography/computed tomography for detecting
recurrence of hepatocellular carcinoma in posttransplant
patients[J]. Liver Transpl, 2010, 16(6): 767-772.
[18] Refaat R, Basha MAA, Hassan MS, et al. Efficacy of contrastenhanced
FDG PET/CT in patients awaiting liver transplantation
with rising alpha-fetoprotein after bridge therapy of hepatocellular
carcinoma[J]. Eur Radiol, 2018, 28(12): 5356-5367.
[19] Filippi L, Schillaci O, Bagni O. Recent advances in PET probes
for hepatocellular carcinoma characterization[J]. Expert Rev Med
Devices, 2019, 16(5): 341-350.
[20] Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of
hepatocellular carcinoma using 11C-choline PET: comparison
with 18F-FDG PET[J]. J Nucl Med, 2008, 49(8): 1245-1248.
[21] Chotipanich C, Kunawudhi A, Promteangtrong C, et al.
Diagnosis of hepatocellular carcinoma using C-11 choline PET/
CT: Comparison with F-18 FDG, contrast-enhanced MRI and
MDCT[J]. Asian Pac J Cancer Prev, 2016, 17(7): 3569-3573.
[22] Park JW, Kim JH, Kim SK, et al. A Prospective Evaluation of
18F-FDG and 11C-Acetate PET/CT for Detection of Primary and
Metastatic Hepatocellular Carcinoma[J]. J Nucl Med, 2008,
49(12): 1912-1921.
[23] Signore G, Nicod-Lalonde M, Prior JO, et al. Detection rate of
radiolabelled choline PET or PET/CT in hepatocellular carcinoma:
an updated systematic review and meta-analysis[J]. Clin Transl
Imaging, 2019, 7(2): 237-253.
[24] Cheung TT, Ho CL, Lo CM, et al. 11C-Acetate and 18F-FDG
PET/CT for Clinical Staging and Selection of Patients with
Hepatocellular Carcinoma for Liver Transplantation on the Basis
of Milan Criteria: Surgeon's Perspective[J]. J Nucl Med, 2013,
54(2): 192-200.
[25] Donadon M, Lopci E, Galvanin J, et al. Prognostic Value of
Metabolic Imaging Data of 11C-choline PET/CT in Patients
Undergoing Hepatectomy for Hepatocellular Carcinoma[J].
Cancers (Basel), 2021, 13(3): 472.
[26] Lanza E, Donadon M, Felisaz P, et al. Refining the management
of patients with hepatocellular carcinoma integrating C-11-choline
PET/CT scan into the multidisciplinary team discussion[J]. Nucl
Med Commun, 2017, 38(10): 826-836.
[27] Dondi F, Albano D, Cerudelli E, et al. Radiolabelled PSMA PET/
CT or PET/MRI in hepatocellular carcinoma (HCC): a systematic
review[J]. Clin Transl Imaging, 2020, 8(2): 461-467.
[28] Shi X, Xing H, Yang X, et al. Fibroblast imaging of hepatic
carcinoma with 68Ga-FAPI-04 PET/CT: a pilot study in patients
with suspected hepatic nodules[J]. Eur J Nucl Med Mol Imaging,
2021, 48(1): 196-203.
[29] Kunikowska J, Cie?lak B, Gierej B, et al. 68Ga-Prostate-Specific
Membrane Antigen PET/CT: a novel method for imaging patients
with hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging,
2021, 48(3): 883-892.
[30] Tolkach Y, Goltz D, Kremer A, et al. Prostate-specific membrane
antigen expr‍ession in hepatocellular carcinoma: potential use for
prognosis and diagnostic imaging[J]. Oncotarget, 2019, 10(41):
4149-4160.
[31] Mikhail K, Charles L, Dov H, et al. Ga-68-Labeled Prostate-
Specific Membrane Antigen Is a Novel PET/CT Tracer for
Imaging of Hepatocellular Carcinoma: A Prospective Pilot
Study[J]. J Nucl Med, 2019, 60(2): 185-191.
[32] Kunikowska J, Cie?lak B, Gierej B, et al. 68Ga-Prostate-Specific
Membrane Antigen PET/CT: a novel method for imaging patients
with hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging,
2021, 48(3): 883-892.
[33] Kuyumcu S, Has-Simsek D, Iliaz R, et al. Evidence of Prostate-
Specific Membrane Antigen Expression in Hepatocellular
Carcinoma Using 68Ga-PSMA PET/CT[J]. Clin Nucl Med, 2019, 44(9): 702-706.
[34] Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT:
Tracer Uptake in 28 Different Kinds of Cancer[J]. J Nucl Med,
2019, 60(6): 801-805.
[35] Wang H, Zhu WW, Ren SH, et al. 68Ga-FAPI-04 Versus 18F-FDG
PET/CT in the Detection of Hepatocellular Carcinoma[J]. Front
Oncol, 2021, 11: 693640.
[36] Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for
hepatocellular carcinoma: Expansion of the tumor size limits
does not adversely impact survival[J]. Hepatology, 2001, 33(6):
1394-1403.
[37] Chen J, Xu X, Wu J, et al. The stratifying value of Hangzhou
criteria in liver transplantation for hepatocellular carcinoma[J].
PLoS One, 2014, 9(3): e93128.
[38] Jia F, Yang GS, Fu ZR, et al. Liver transplantation outcomes in
1,078 hepatocellular carcinoma patients: a multi-center experience
in Shanghai, China[J]. J Cancer Res Clin Oncol, 2009, 135(10):
1403-1412.
[39] Welker MW, Bechstein WO, Zeuzem S, et al. Recurrent
hepatocellular carcinoma after liver transplantation-an emerging
clinical challenge[J]. Transpl Int, 2012, 26(2): 109-118.
[40] Takada Y, Kaido T, Shirabe K, et al. Significance of preoperative
fluorodeoxyglucose-positron emission tomography in prediction
of tumor recurrence after liver transplantation for hepatocellular
carcinoma patients: a Japanese multicenter study[J]. J
Hepatobiliary Pancreat Sci, 2017, 24(1): 49-57.
[41] Kornberg A, Schernhammer M, Friess H. 18F-FDG-PET for
Assessing Biological Viability and Prognosis in Liver Transplant
Patients with Hepatocellular Carcinoma[J]. J Clin Transl Hepatol,
2017, 5(3): 224-234.
[42] Kornberg A, Küpper B, Tannapfel A, et al. Patients with non-
[18F]fludeoxyglucose-avid advanced hepatocellular carcinoma on
clinical staging may achieve long-term recurrence-free survival
after liver transplantation[J]. Liver Transpl, 2012, 18(1): 53-61.
[43] Kornberg A, Witt U, Schernhammer M, et al. Combining
18F-FDG positron emission tomography with Up-to-seven criteria
for selecting suitable liver transplant patients with advanced
hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1): 14176.
[44] Kornberg A, Freesmeyer M, B?rthel E, et al. 18F-FDG-uptake of
hepatocellular carcinoma on PET predicts microvascular tumor
invasion in liver transplant patients[J]. Am J Transplant, 2009,
9(3): 592-600.
[45] Hsu C, Chen C, Wang C, et al. Combination of FDG-PET and
UCSF Criteria for Predicting HCC Recurrence After Living
Donor Liver Transplantation[J]. Transplantation, 2016, 100(9):
1925-1932.
[46] Lee SD, Kim SH, Kim SK, et al. Clinical Impact of
18F-Fluorodeoxyglucose Positron Emission Tomography/
Computed Tomography in Living Donor Liver Transplantation for
Advanced Hepatocellular Carcinoma[J]. Transplantation, 2015,
99(10): 2142-2149.
[47] Lee SD, Kim SH, Kim YK, et al. 18F-FDG-PET/CT predicts
early tumor recurrence in living donor liver transplantation for
hepatocellular carcinoma[J]. Transpl Int, 2013, 26(1): 50-60.
[48] Lim C, Salloum C, Chalaye J, et al. 18F-FDG PET/CT predicts
microvascular invasion and early recurrence after liver resection
for hepatocellular carcinoma: A prospective observational
study[J]. HPB (Oxford), 2019, 21(6): 739-747.
[49] Sun DW, An L, Wei F, et al. Prognostic significance of parameters
from pretreatment 18F-FDG PET in hepatocellular carcinoma: a
meta-analysis[J]. Abdom Radiol (NY), 2016, 41(1): 33-41.
[50] So n g MJ , Ba e SH, Yo o IR, e t a l . Pr e d i c t i v e v a l u e
of 18F- f luorodeoxyglucos e PET/CT for t r ans a r t e r i a l
chemolipiodolization of hepatocellular carcinoma[J]. World J
Gastroenterol, 2012, 18(25): 3215-3222.
[51] Song MJ, Bae SH, Lee SW, et al. 18F-fluorodeoxyglucose PET/CT
predicts tumour progression after transarterial chemoembolization
in hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging,
2013, 40(6): 865-873.

Related articles from Frontiers Journals
[1] ZHU Xiaoli, XU Lu. Research Progress of Markers Related to Early Diagnosis of Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 875-879.
[2] LI Jinzhou, WANG Wenjie, YAO Yalong, MU Yanxi, CHEN Kang, SHEN Yimin, WANG Zhou, HUANG Zeping, CHEN Xiao. Development and Validation of Prognostic Nomogram Based on Negative Lymph Node Count for Patients with Gastric Signet Ring Cell Carcinoma#br#[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 923-930.
[3] HUANG Zhenghua, ZHOU Jian, LI Yufu, LIU Yanyan, ZHOU Keshu, SONG Yongping. Clinical Efficacy and Prognostic Factors of Autologous Hematopoietic Stem Cell Transplantation for Hodgkin’s Lymphoma in 38 Cases[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 952-955.
[4] XU XiaoFei, LI Yang, CHEN Lingyun, DAI Heyang, XUE Jiaojiao, LI Qingxia, . Research Progress of PNI and CONUT in Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(09): 961-964.
[5] CAO Guangwen. Theoretical Update of Cancer Evo-Dev and Its Role in Targeted Immunotherapy for Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 747-755.
[6] JIA Lijuan, ZHANG Yunqiang, ZHANG Baihong, YUE Hongyun. Expression and Clinical Significance of m6A Methylatransferase ZC3H13 in Gastric Cancer Tissues and Serum[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 792-798.
[7] SUI Daxing, WANG Xueying, ZHANG Jiaxin. A New N-staging System for Predicting Postoperative Survival of M0 Stage Inflammatory Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 799-805.
[8] LI Jinzhou, HUANG Zeping, MU Yanxi, YAO Yalong, WANG Wenjie, LIU Haipeng, LIU Jie, WANG Zhou, CHEN Xiao. Prognostic Value of Negative Lymph Nodes Count in Solid Tumors[J]. Cancer Research on Prevention and Treatment, 2022, 49(08): 843-849.
[9] ZHOU Zhipeng, YANG Mingzhu, CAI Mingqin, XUE Juandi, LYU Xiaoyun. Mechanism of Astragaloside IV on HepG2 Cells Based on Molecular Dynamics Simulation and Experimental Evaluation[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 655-661.
[10] ZHOU Silei, SUN Guanqun, ZENG Tanlun, CHENG Zhuo, LIANG Xijun. Expression and Prognostic Value of CK2α' in Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 662-666.
[11] XIA Lili, ZHU Xinyi, ZHANG Xiwei, LI Zhengjiang, LIU Shaoyan, LU Haizhen, AN Changming. Predictive Value of Depth of Invasion of Tongue Squamous Cell Carcinoma for Cervical Lymph Node Metastasis and Prognosis[J]. Cancer Research on Prevention and Treatment, 2022, 49(07): 675-681.
[12] ZHAN Jianghua, WANG Zhiru, . Progress and Comment on Surgical Treatment of Hepatoblastoma in Children[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 541-545.
[13] ZHOU Shi. Progress in Locoregional Interventional Therapy of Primary Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 552-556.
[14] JIANG Mingting, HUANG Jing, ZHENG Shuping. Effects of Pin1 on Proliferation and Apoptosis of HepG2 Cells Under Endoplasmic Reticulum Stress[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 575-580.
[15] XU Huan, WANG Guangli, LI Tingming, WANG Wei, DONG Dandan. Transcriptome Analysis of Inhibitory Effect of Astaxanthin Against HepG2 Cell Lines[J]. Cancer Research on Prevention and Treatment, 2022, 49(06): 581-584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed