[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA
Cancer J Clin, 2018, 68(1): 7-30.
[2] Chen C, Xie L, Ren T, et al. Immunotherapy for osteosarcoma:
Fundamental mechanism, rationale, and recent breakthroughs[J].
Cancer Lett, 2021, 500: 1-10.
[3] Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Bone:
An Updated Review[J]. Adv Anat Pathol, 2021, 28(3): 119-138.
[4] Meyers PA, Healey JH, Chou AJ, et al. Addition of pamidronate to
chemotherapy for the treatment of osteosarcoma[J]. Cancer, 2011,
117(8): 1736-1744.
[5] Haworth KB, Leddon JL, Chen CY, et al. Going back to class
I: MHC and immunotherapies for childhood cancer[J]. Pediatr
Blood Cancer, 2015, 62(4): 571-576.
[6] Subleski JJ, Wiltrout RH, Weiss JM. Application of tissuespecific
NK and NKT cell activity for tumor immunotherapy[J]. J
Autoimmun, 33(3-4): 275-281.
[7] Tan TT, Coussens LM. Humoral immunity, inflammation and
cancer[J]. Curr Opin Immunol, 2007, 19(2): 209-216.
[8] Gu Y, Liu Y, Fu L, et al. Tumor-educated B cells selectively
promote breast cancer lymph node metastasis by HSPA4-targeting
IgG[J]. Nat Med, 2019, 25(2): 312-322.
[9] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of
anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl
J Med, 2012, 366(26): 2455-2465.
[10] Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:
integrating immunity’s roles in cancer suppression and
promotion[J]. Science, 2011, 331(6024): 1565-1570.
[11] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined
Nivolumab and Ipilimumab or Monotherapy in Untreated
Melanoma[J]. N Engl J Med, 2015, 373(1): 23-34.
[12] Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 Blockade
in Resectable Lung Cancer[J]. N Engl J Med, 2018, 378(21):
1976-1986.
[13] Lussier DM, O’Neill L, Nieves LM, et al. Enhanced T-cell
immunity to osteosarcoma through antibody blockade of PD-1/
PD-L1 interactions[J]. J Immunother, 2015, 38(3): 96-106.
[14] Liu X, He S, Wu H, et al. Blocking the PD-1/PD-L1 axis enhanced
cisplatin chemotherapy in osteosarcoma in vitro and in vivo[J].
Environ Health Prev Med, 2019, 24(1): 79.
[15] Le Cesne A, Marec-Berard P, Blay JY, et al. Programmed cell
death 1 (PD-1) targeting in patients with advanced osteosarcomas:
results from the PEMBROSARC study[J]. Eur J Cancer, 2019,
119: 151-157.
[16] Xie L, Xu J, Sun X, et al. Apatinib plus camrelizumab (anti-
PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO)
progressing after chemotherapy: a single-arm, open-label, phase 2
trial[J]. J Immunother Cancer, 2020, 8(1): e000798.
[17] Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in
advanced soft-tissue sarcoma and bone sarcoma (SARC028): a
multicentre, two-cohort, single-arm, open-label, phase 2 trial[J].
Lancet Oncol, 2017, 18(11): 1493-1501.
[18] Shen JK, Cote GM, Choy E, et al. Programmed cell death ligand 1
expression in osteosarcoma[J]. Cancer Immunol Res, 2014, 2(7):
690-698.
[19] Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1
Pathway Blockade: Combinations in the Clinic[J]. Front Oncol,
2014, 4: 385.
[20] Hingorani P, Maas ML, Gustafson MP, et al. Increased CTLA-4(+)
T cells and an increased ratio of monocytes with loss of class
Ⅱ (CD14(+) HLA-DR(lo/neg)) found in aggressive pediatric
sarcoma patients[J]. J Immunother Cancer, 2015, 3: 35.
[21] Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy
in patients with pretreated advanced melanoma: a randomised,
double-blind, multicentre, phase 2, dose-ranging study[J]. Lancet
Oncol, 2010, 11(2): 155-164.
[22] Merchant MS, Wright M, Baird K, et al. Phase I Clinical Trial of
Ipilimumab in Pediatric Patients with Advanced Solid Tumors[J].
Clin Cancer Res, 2016, 22(6): 1364-1370.
[23] Lussier DM, Johnson JL, Hingorani P, et al. Combination
immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade
prevents immune escape and leads to complete control of
metastatic osteosarcoma[J]. J Immunother Cancer, 2015, 3: 21.
[24] Roden R, Wu TC. How will HPV vaccines affect cervical
cancer?[J]. Nat Rev Cancer, 2006, 6(10): 753-763.
[25] Dyson KA, Stover BD, Grippin A, et al. Emerging trends in
immunotherapy for pediatric sarcomas[J]. J Hematol Oncol, 2019,
12(1): 78.
[26] Mackall CL, Rhee EH, Read EJ, et al. A pilot study of
consolidative immunotherapy in patients with high-risk pediatric
sarcomas[J]. Clin Cancer Res 2008, 14(15): 4850-4858.
[27] Himoudi N, Wallace R, Parsley KL, et al. Lack of T-cell responses
following autologous tumour lysate pulsed dendritic cell
vaccination, in patients with relapsed osteosarcoma[J]. Clin Transl
Oncol, 2012, 14(4): 271-279.
[28] Miwa S, Nishida H, Tanzawa Y, et al. Phase 1/2 study of
immunotherapy with dendritic cells pulsed with autologous tumor
lysate in patients with refractory bone and soft tissue sarcoma[J].
Cancer, 2017, 123(9): 1576-1584.
[29] Wu T, Dai Y. Tumor microenvironment and therapeutic
response[J]. Cancer Lett, 2017, 387: 61-68.
[30] Qian BZ, Pollard JW. Macrophage diversity enhances tumor
progression and metastasis[J]. Cell, 2010, 141(1): 39-51.
[31] Heymann MF, Lézot F, Heymann D. The contribution of immune
infiltrates and the local microenvironment in the pathogenesis of
osteosarcoma[J]. Cell Immunol, 2019, 343: 103711.
[32] Pu F, Chen F, Zhang Z, et al. Information Transfer and
Biological Significance of Neoplastic Exosomes in the Tumor
Microenvironment of Osteosarcoma[J]. Onco Targets Ther, 2020,
13: 8931-8940.
[33] Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for
osteosarcoma: Where do we go from here?[J]. Pediatr Blood
Cancer, 2018, 65(9): e27227.
[34] Woo SR, Corrales L, Gajewski TF. Innate immune recognition of
cancer[J]. Ann Rev Immunol, 2015, 33: 445-474.
[35] Wang Z, Wang Z, Li B, et al. Innate Immune Cells: A Potential and
Promising Cell Population for Treating Osteosarcoma[J]. Front
Immunol, 2019, 10: 1114.
[36] Pu F, Chen F, Liu J, et al. Immune Regulation of the cGAS-STING
Signaling Pathway in the Tumor Microenvironment and Its
Clinical Application[J]. Onco Targets Ther, 2021, 14: 1501-1516.
[37] Li A, Yi M, Qin S, et al. Activating cGAS-STING pathway for
the optimal effect of cancer immunotherapy[J]. J Hematol Oncol,
2019, 12(1): 35.
[38] Fuertes MB, Woo SR, Burnett B, et al. Type I interferon response
and innate immune sensing of cancer[J]. Trends Immunol, 2013,
34(2): 67-73.
[39] Jing W, McAllister D, Vonderhaar EP, et al. STING agonist
inflames the pancreatic cancer immune microenvironment and
reduces tumor burden in mouse models[J]. J Immunother Cancer,
2019, 7(1): 115.
[40] Ghaffari A, Peterson N, Khalaj K, et al. STING agonist therapy in
combination with PD-1 immune checkpoint blockade enhances
response to carboplatin chemotherapy in high-grade serous
ovarian cancer[J]. Br J Cancer, 2018, 119(4): 440-449.
[41] Jaspers JE, Brentjens RJ. Development of CAR T cells designed to
improve antitumor efficacy and safety[J]. Pharmacol Ther, 2017,
178: 83-91.
[42] Folkert IW, Devalaraja S, Linette GP, et al. Primary Bone Tumors:
Challenges and Opportunities for CAR-T Therapies[J]. J Bone
Miner Res, 2019, 34(10): 1780-1788.
[43] Guedan S, Calderon H, Posey AD Jr, et al. Engineering and
Design of Chimeric Antigen Receptors[J]. Mol Ther Methods Clin
Dev, 2019, 12: 145-156.
[44] Feinberg D, Paul B, Kang Y. The promise of chimeric antigen
receptor (CAR) T cell therapy in multiple myeloma[J]. Cell
Immunol, 2019, 345: 103964.
[45] Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in
refractory or relapsed B acute lymphoblastic leukemia[J].
Leukemia, 2019, 33(12): 2854-2866.
[46] Pehlivan KC, Duncan BB, Lee DW. CAR-T Cell Therapy for
Acute Lymphoblastic Leukemia: Transforming the Treatment of
Relapsed and Refractory Disease[J]. Curr Hematol Malig Rep,
2018, 13(5): 396-406.
[47] Potter JW, Jones KB, Barrott JJ. Sarcoma-The standard-bearer in
cancer discovery[J]. Crit Rev Oncol Hematol, 2018, 126: 1-5.
[48] Majzner RG, Theruvath JL, Nellan A, et al. CAR T Cells Targeting
B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical
Activity Against Pediatric Solid Tumors and Brain Tumors[J].
Clin Cancer Res, 2019, 25(8): 2560-2574.
[49] Théoleyre S, Mori K, Cherrier B, et al. Phenotypic and functional
analysis of lymphocytes infiltrating osteolytic tumors: use as a
possible therapeutic approach of osteosarcoma[J]. BMC Cancer,
2005, 5: 123.
[50] Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients
with metastatic melanoma with autologous tumor-infiltrating
lymphocytes and interleukin 2[J]. J Nat Cancer Inst, 1994, 86(15):
1159-1166.
[51] Tang H, Wang Y, Chlewicki LK, et al. Facilitating T Cell
Infiltration in Tumor Microenvironment Overcomes Resistance to
PD-L1 Blockade[J]. Cancer Cell, 2016, 30(3): 500.
[52] Sierro SR, Donda A, Perret R, et al. Combination of lentivector
immunization and low-dose chemotherapy or PD-1/PD-L1
blocking primes self-reactive T cells and induces anti-tumor
immunity[J]. Eur J Immunol, 2011, 41(8): 2217-2228.
[53] Kansara M, Teng MW, Smyth MJ, et al. Translational biology of
osteosarcoma[J]. Nat Rev Cancer, 2014, 14(11): 722-735.
[54] Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of
osteosarcoma reveals mutation signatures reminiscent of BRCA
deficiency[J]. Nat Commun, 2015, 6: 8940.
|