[1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021 [J].
CA Cancer J Cin, 2021, 71(1): 7-33.
[2] 王莉新, 吴文斌, 朱诗国. 非小细胞肺癌免疫治疗的策略与展望
[J]. 现代免疫学, 2018, 38(3): 247-251. [Wang LX, Wu WB, Zhu
SG. Strategies and prospects of immunotherapy for non-small cell
lung cancer[J]. Xian Dai Mian Yi Xue, 2018, 38(3): 247-251.]
[3] Gibert J, Clavé S, Hardy-Werbin M, et al. Concomitant genomic
alterations in KRAS mutant advanced lung adenocarcinoma[J].
Lung Cancer, 2020, 140: 42-45.
[4] 陈捷, 姜达, 黄芳. 非小细胞肺癌中驱动基因状态与免疫治疗
相关性的研究进展[J]. 中国肺癌杂志, 2019, 22(4): 233-238.
[Chen J, Jiang D, Huang F. Advances of the Correlation between
Driver Gene Status and Immunotherapy in Non-small Cell Lung
Cancer[J]. Zhongguo Fei Ai Za Zhi, 2019, 22(4): 233-238.]
[5] Zhao N, Wilkerson MD, Shah U, et al. Alterations of LKB1
and KRAS and risk of brain metastasis: comprehensive
characterization by mutation analysis, copy number, and gene
expression in non-small-cell lung carcinoma[J]. Lung Cancer,
2014, 86(2): 255-261.
[6] Guertin DA, Sabatini DM. Defining the role of mTOR in cancer[J].
Cancer Cell, 2007, 12(1): 9-22.
[7] Hawley SA, Boudeau J, Reid JL, et al. Complexes between the
LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/
beta are upstream kinases in the AMP-activated protein kinase
cascade[J]. J Biol, 2003, 2(4): 28.
[8] Shirwany NA, Zou MH. AMPK: a cellular metabolic and redox
sensor. A minireview[J]. Front Biosci (Landmark Ed), 2014,
19(3): 447-474.
[9] Stein SC, Woods A, Jones NA, et al. The regulation of AMPactivated
protein kinase by phosphorylation[J]. Biochem J, 2000,
345 Pt 3(Pt 3): 437-443.
[10] Hardie DG. AMPK: a target for drugs and natural products with
effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7):
2164-2172.
[11] Lizcano JM, G?ransson O, Toth R, et al. LKB1 is a kinase
that activates 13 kinases of the AMPK subfamily, including
MARK/PAR-1[J]. EMBO J, 2004, 23(4): 833-843.
[12] Manning BD, Cantley LC. United at last: the tuberous sclerosis
complex gene products connect the phosphoinositide 3-kinase/Akt
pathway to mammalian target of rapamycin (mTOR) signalling[J].
Biochem Soc Trans, 2003, 31(Pt 3): 573-578.
[13] Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response
to control cell growth and survival[J]. Cell, 2003, 115(5): 577-590.
[14] Wang Z, Wang N, Liu P, et al. AMPK and Cancer[J]. Exp Suppl,
2016, 107: 203-226.
[15] 江美林, 彭文颖, 李佳, 等. 非小细胞肺癌免疫治疗生物标志物
研究进展[J]. 肿瘤防治研究, 2018, 45(10): 805-810. [Jiang ML,
Peng WY, Li J, et al. Research progress in non-small cell lung
cancer immunotherapy biomarkers[J]. Zhong Liu Fang Zhi Yan
Jiu, 2018, 45(10): 805-810.]
[16] Aggarwal C, Thompson JC, Chien AL, et al. Baseline Plasma
Tumor Mutation Burden Predicts Response to Pembrolizumabbased
Therapy in Patients with Metastatic Non-Small Cell Lung
Cancer[J]. Clin Cancer Res, 2020, 26(10): 2354-2361.
[17] Biton J, Mansuet-Lupo A, Pécuchet N, et al. TP53, STK11, and
EGFR Mutations Predict Tumor Immune Profile and the Response
to Anti-PD-1 in Lung Adenocarcinoma[J]. Clin Cancer Res, 2018,
24(22): 5710-5723.
[18] Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1
Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung
Adenocarcinoma[J]. Cancer Discov, 2018, 8(7): 822-835.
[19] Rizvi H, Sanchez-Vega F, La K, et al. Molecular Determinants
of Response to Anti-Programmed Cell Death (PD)-1 and Anti-
Programmed Death-Ligand 1 (PD-L1) Blockade in Patients
With Non-Small-Cell Lung Cancer Profiled With Targeted Next-
Generation Sequencing[J]. J Clin Oncol, 2018, 36(7): 633-641.
[20] Skoulidis F, Byers LA, Diao L, et al. Co-occurring genomic
alterations define major subsets of KRAS-mutant lung
adenocarcinoma with distinct biology, immune profiles, and
therapeutic vulnerabilities[J]. Cancer Discov, 2015, 5(8): 860-877.
[21] Skoulidis F, Heymach JV. Co-occurring genomic alterations
in non-small-cell lung cancer biology and therapy[J]. Nat Rev
Cancer, 2019, 19(9): 495-509.
[22] Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden
and Response Rate to PD-1 Inhibition[J]. N Engl J Med, 2017,
377(25): 2500-2501.
[23] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency
predicts response of solid tumors to PD-1 blockade[J]. Science,
2017, 357(6349): 409-413.
[24] Carbone DP, Reck M, Paz-Ares L, et al. First-Line Nivolumab in
Stage IV or Recurrent Non-Small-Cell Lung Cancer[J]. N Engl J
Med, 2017, 376(25): 2415-2426.
[25] Binnewies M, Roberts EW, Kersten K, et al. Understanding the
tumor immune microenvironment (TIME) for effective therapy[J].
Nat Med, 2018, 24(5): 541-550.
[26] Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven
biomarkers to guide immune checkpoint blockade in cancer
therapy[J]. Nat Rev Cancer, 2016, 16(5): 275-287.
[27] Donnem T, Kilvaer TK, Andersen S, et al. Strategies for clinical
implementation of TNM-Immunoscore in resected nonsmall-cell
lung cancer[J]. Ann Oncol, 2016, 27(2): 225-232.
[28] Kim HJ, Cantor H. CD4 T-cell subsets and tumor immunity: the
helpful and the not-so-helpful[J]. Cancer Immunol Res, 2014,
2(2): 91-98.
[29] Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by
CD8+ T cells and CD4+ T cells is a favourable prognostic factor
in non-small-cell lung carcinoma[J]. Br J Cancer, 2006, 94(2):
275-280.
[30] Wang H, Guo J, Shang X, et al. Less immune cell infiltration
and worse prognosis after immunotherapy for patients with
lung adenocarcinoma who harbored STK11 mutation[J]. Int
Immunopharmacol, 2020, 84: 106574.
[31] El Osta B, Behera M, Kim S, et al. Characteristics and Outcomes of
Patients With Metastatic KRAS-Mutant Lung Adenocarcinomas:
The Lung Cancer Mutation Consortium Experience[J]. J Thorac
Oncol, 2019, 14(5): 876-889.
[32] La Fleur L, Falk-S?rqvist E, Smeds P, et al. Mutation patterns
in a population-based non-small cell lung cancer cohort and
prognostic impact of concomitant mutations in KRAS and TP53
or STK11[J]. Lung Cancer, 2019, 130: 50-58.
[33] Schabath MB, Welsh EA, Fulp WJ, et al. Differential association
of STK11 and TP53 with KRAS mutation-associated gene
expression, proliferation and immune surveillance in lung
adenocarcinoma[J]. Oncogene, 2016, 35(24): 3209-3216.
[34] Bange E, Marmarelis ME, Hwang WT, et al. Impact of KRAS
and TP53 Co-Mutations on Outcomes After First-Line Systemic
Therapy Among Patients With STK11-Mutated Advanced
Non-Small-Cell Lung Cancer[J]. JCO Precis Oncol, 2019, 3:
PO.18.00326.
[35] Skoulidis F, Li BT, Dy GK, et al. Sotorasib for Lung Cancers
with KRAS p.G12C Mutation[J]. N Engl J Med, 2021, 384(25):
2371-2381.
[36] Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes
Kras-driven lung cancer and results in dependence on
glutaminolysis[J]. Nat Med, 2017, 23(11): 1362-1368.
[37] Papillon-Cavanagh S, Doshi P, Dobrin R, et al. STK11 and KEAP1
mutations as prognostic biomarkers in an observational real-world
lung adenocarcinoma cohort[J]. ESMO Open, 2020, 5(2): e000706.
[38] Gadgeel S, Rodríguez-Abreu D, Speranza G, et al. Updated
Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus
Pemetrexed and Platinum for Previously Untreated Metastatic
Nonsquamous Non-Small-Cell Lung Cancer[J]. J Clin Oncol,
2020, 38(14): 1505-1517.
[39] Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus
chemotherapy for previously untreated, PD-L1-expressing,
locally advanced or metastatic non-small-cell lung cancer
(KEYNOTE-042): a randomised, open-label, controlled, phase 3
trial[J]. Lancet,, 2019, 393(10183): 1819-1830.
[40] Armon S, Hofman P, Ilié M. Perspectives and Issues in the
Assessment of SMARCA4 Deficiency in the Management of
Lung Cancer Patients[J]. Cells, 2021, 10(8): 1920.
|