高级搜索

肿瘤免疫治疗PD-1/PD-L1靶向核素分子探针的研究进展

王淑静, 徐晓霞, 周欣, 刘特立, 李囡, 朱华, 杨志

王淑静, 徐晓霞, 周欣, 刘特立, 李囡, 朱华, 杨志. 肿瘤免疫治疗PD-1/PD-L1靶向核素分子探针的研究进展[J]. 肿瘤防治研究, 2020, 47(1): 70-76. DOI: 10.3971/j.issn.1000-8578.2020.19.1123
引用本文: 王淑静, 徐晓霞, 周欣, 刘特立, 李囡, 朱华, 杨志. 肿瘤免疫治疗PD-1/PD-L1靶向核素分子探针的研究进展[J]. 肿瘤防治研究, 2020, 47(1): 70-76. DOI: 10.3971/j.issn.1000-8578.2020.19.1123
WANG Shujing, XU Xiaoxia, ZHOU Xin, LIU Teli, LI Nan, ZHU Hua, YANG Zhi. Research Progress of PD-1/PD-L1 Targeted Radionuclide Molecular Probes in Tumor Immunotherapy[J]. Cancer Research on Prevention and Treatment, 2020, 47(1): 70-76. DOI: 10.3971/j.issn.1000-8578.2020.19.1123
Citation: WANG Shujing, XU Xiaoxia, ZHOU Xin, LIU Teli, LI Nan, ZHU Hua, YANG Zhi. Research Progress of PD-1/PD-L1 Targeted Radionuclide Molecular Probes in Tumor Immunotherapy[J]. Cancer Research on Prevention and Treatment, 2020, 47(1): 70-76. DOI: 10.3971/j.issn.1000-8578.2020.19.1123

肿瘤免疫治疗PD-1/PD-L1靶向核素分子探针的研究进展

基金项目: 

国家自然科学基金面上项目 81671733

国家自然科学基金面上项目 81871386

国家自然科学基金面上项目 81871387

北京市自然科学基金重点项目 7171002

详细信息
    作者简介:

    王淑静(1991-),女,博士,助理研究员,主要从事影像医学与核医学研究

    通信作者:

    朱华(1984-),男,博士,副研究员,主要从事核医学与放射性药物研究,E-mail: zhuhuananjing@163.com

    杨志(1967-),男,博士,研究员,主要从事核医学与放射性药物研究,E-mail: pekyz@163.com

  • 中图分类号: R730.51

Research Progress of PD-1/PD-L1 Targeted Radionuclide Molecular Probes in Tumor Immunotherapy

More Information
  • 摘要:

    PD-1/PD-L1免疫治疗已成为继放化疗以外治疗多种难治性、复发性肿瘤的一种重要方法,但只有部分患者从中获益。PD-1/PD-L1靶向核素分子探针核医学显像可以无创、实时、重复地进行全身(包括肿瘤及其他组织中)的PD-1/PD-L1表达水平的活体检测,便于:(1)帮助临床筛选获益患者;(2)免疫治疗的疗效评价;(3)动态监测PD-1/PD-L1在治疗过程中的变化,为治疗方案调整提供有力依据。本文将对PD-1/PD-L1靶向核素分子探针的临床前及临床转化研究进行综述,以期为肿瘤免疫治疗的临床应用及进一步研究提供参考。

     

    Abstract:

    PD-1/PD-L1 immune checkpoint therapy has become another important treatment for several refractory and recurrent tumors besides radiotherapy and chemotherapy; however, only some patients can benefit from it. PD-1/PD-L1 targeted radionuclide molecular probe imaging can detect the PD-1/PD-L1 expression in whole body including tumors and other tissues noninvasively, timely and repeatedly, which will be more convenient for screening the patients benefiting from the immune-therapy, the efficacy evaluation and dynamic monitoring of the changes of PD-1/PD-L1 expression during treatment, providing a strong basis for the adjustment of treatment plan. This paper will review the recent progress of PD-1/PD-L1 targeted molecular probes, in order to provide reference for clinical application and further research of tumor immunotherapy.

     

  • 作者贡献
    王淑静:文献调研、论文设计及撰写
    徐晓霞、周欣、刘特立:文献调研
    李囡、朱华、杨志:论文设计及修改
  • 表  1   核素标记抗PD-L1完整单克隆抗体显像

    Table  1   Imaging of radionuclide-labeled complete anti-PD-L1 monoclonal antibody

    下载: 导出CSV

    表  2   核素标记抗PD-1完整单克隆抗体显像

    Table  2   Imaging of radionuclide-labeled complete anti-PD-1 monoclonal antibody

    下载: 导出CSV

    表  3   核素标记低分子量探针显像

    Table  3   Imaging of radionuclide-labeled low molecular weight probe

    下载: 导出CSV
  • [1]

    Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome[J]. Front Pharmacol, 2017, 8: 561. doi: 10.3389/fphar.2017.00561

    [2]

    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2015, 373(2): 123-135. doi: 10.1056/NEJMoa1504627

    [3]

    Aguiar PN Jr, Perry LA, Penny-Dimri J, et al. The effect of PD-L1 testing on the cost-effectiveness and economic impact of immune checkpoint inhibitors for the second-line treatment of NSCLC[J]. Ann Oncol, 2017, 28(9): 2256-2263. doi: 10.1093/annonc/mdx305

    [4]

    Macek Jilkova Z, Aspord C, Decaens T. Predictive Factors for Response to PD-1/PD-L1 Checkpoint Inhibition in the Field of Hepatocellular Carcinoma: Current Status and Challenges[J]. Cancers(Basel), 2019, 11(10). pii: E1554.

    [5]

    Liu X, Guo CY, Tou FF, et al. Association of PD-L1 expression status with the efficacy of PD-1/PD-L1 inhibitors and overall survival in solid tumors: A systematic review and meta-analysis[J]. Int J Cancer, 2019.[Epub ahead of print]

    [6]

    Sunshine J, Taube JM. PD-1/PD-L1 inhibitors[J]. Curr Opin Pharmacol, 2015, 23: 32-38. doi: 10.1016/j.coph.2015.05.011

    [7]

    Tang B, Yan X, Sheng X, et al. Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients[J]. J Hematol Oncol, 2019, 12(1): 7. http://d.old.wanfangdata.com.cn/Periodical/zhwk201503013

    [8]

    Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: Results from Phase 1 of the Blueprint PD-L1 IHC assay Comparison project[J]. J Thorac Oncol, 2017, 12(2): 208-222. doi: 10.1016/j.jtho.2016.11.2228

    [9]

    Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction?[J]. J Immunother Cancer, 2016, 4: 48. doi: 10.1186/s40425-016-0153-x

    [10]

    Wang F, Wei XL, Wang FH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phaseⅠb/Ⅱclinical trial NCT02915432[J]. Ann Oncol, 2019, 30(9): 1479-1486. doi: 10.1093/annonc/mdz197

    [11]

    Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. doi: 10.1056/NEJMoa1500596

    [12]

    Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy[J]. Science, 2018, 359(6375): 582-587. doi: 10.1126/science.aao4572

    [13]

    Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis[J]. Lancet Respir Med, 2018, 6(10): 771-781. doi: 10.1016/S2213-2600(18)30284-4

    [14]

    Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment[J]. Adv Drug Deliv Rev, 2017, 113: 24-48. doi: 10.1016/j.addr.2016.07.012

    [15]

    Heskamp S, Hobo W, Molkenboer-Kuenen JD, et al. Noninvasive Imaging of Tumor PD-L1 Expression Using Radiolabeled Anti-PD-L1 Antibodies[J]. Cancer Res, 2015, 75(14): 2928-2936. doi: 10.1158/0008-5472.CAN-14-3477

    [16]

    Chatterjee S, Lesniak WG, Gabrielson M, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors[J]. Oncotarget, 2016, 7(9): 10215-10227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2916f35d5395faf6ac5ea857796b576a

    [17]

    Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive Imaging of Immune Checkpoint Ligand PD-L1 in Tumors and Metastases for Guiding Immunotherapy[J]. Mol Imaging, 2017, 16: 1536012117718459.

    [18]

    Truillet C, Oh HLJ, Yeo SP, et al. Imaging PD-L1 expression with immunoPET[J]. Bioconjug Chem, 2018, 29(1): 96-103. doi: 10.1021/acs.bioconjchem.7b00631

    [19]

    Josefsson A, Nedrow JR, Park S, et al. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer[J]. Cancer Res, 2016, 76(2): 472-479. doi: 10.1158/0008-5472.CAN-15-2141

    [20]

    Hettich M, Braun F, Bartholomä MD, et al. High-Resolution PET Imaging with Therapeutic Antibody-based PD-1/PD-L1 Checkpoint Tracers[J]. Theranostics, 2016, 6(10): 1629-1640. doi: 10.7150/thno.15253

    [21]

    Nedrow JR, Josefsson A, Park S, et al. Imaging of Programmed Cell Death Ligand 1: Impact of Protein Concentration on Distribution of Anti-PD-L1 SPECT Agents in an Immunocompetent Murine Model of Melanoma[J]. J Nucl Med, 2017, 58(10): 1560-1566. doi: 10.2967/jnumed.117.193268

    [22]

    Kikuchi M, Clump DA, Srivastava RM, et al. Preclinical immuno PET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma[J]. Oncoimmunology, 2017, 6(7): e1329071.

    [23]

    Ehlerding EB, Lee HJ, Barnhart TE, et al. Noninvasive Imaging and Quantification of Radiotherapy-Induced PD-L1 Upregulation with 89Zr-Df-Atezolizumab[J]. Bioconjug Chem, 2019, 30(5): 1434-1441. doi: 10.1021/acs.bioconjchem.9b00178

    [24]

    Natarajan A, Mayer AT, Xu L, et al. Novel Radiotracer for ImmunoPET Imaging of PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes[J]. Bioconjug Chem, 2015, 26(10): 2062-2069. doi: 10.1021/acs.bioconjchem.5b00318

    [25]

    Du Y, Liang X, Li Y, et al. Nuclear and fluorescent labeled PD-1-Liposome-DOX-64Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy[J]. Mol Pharm, 2017, 14(11): 3978-3986. doi: 10.1021/acs.molpharmaceut.7b00649

    [26]

    England CG, Ehlerding EB, Hernandez R, et al. Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab[J]. J Nucl Med, 2017, 58(1): 162-168. doi: 10.2967/jnumed.116.177857

    [27]

    Natarajan A, Mayer AT, Reeves RE, et al. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model[J]. Mol Imaging Biol, 2017, 19(6): 903-914. doi: 10.1007/s11307-017-1060-3

    [28]

    Natarajan A, Patel CB, Habte F, et al. Dosimetry Prediction for Clinical Translation of 64Cu-Pembrolizumab ImmunoPET Targeting Human PD-1 Expression[J]. Sci Rep, 2018, 8(1): 633. doi: 10.1038/s41598-017-19123-x

    [29]

    Cole EL, Kim J, Donnelly DJ, et al. Radiosynthesis and preclinical PET evaluation of 89Zr-nivolumab (BMS-936558) in healthy non-human primates[J]. Bioorg Med Chem, 2017, 25(20): 5407-5414. doi: 10.1016/j.bmc.2017.07.066

    [30]

    England CG, Jiang D, Ehlerding EB, et al. 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45(1): 110-120. doi: 10.1007/s00259-017-3803-4

    [31]

    Li D, Cheng S, Zou S, et al. Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody[J]. Mol Pharm, 2018, 15(4): 1674-1681. doi: 10.1021/acs.molpharmaceut.8b00062

    [32]

    Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging[J]. Proc Natl Acad Sci U S A, 2015, 112(47): E6506-E6514. doi: 10.1073/pnas.1519623112

    [33]

    Broos K, Keyaerts M, Lecocq Q, et al. Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers[J]. Oncotarget, 2017, 8(26): 41932-41946.

    [34]

    Donnelly DJ, Smith RA, Morin P, et al. Synthesis and Biologic Evaluation of a Novel 18F-Labeled Adnectin as a PET Radioligand for Imaging PD-L1 Expression[J]. J Nucl Med, 2018, 59(3): 529-535. doi: 10.2967/jnumed.117.199596

    [35]

    De Silva RA, Kumar D, Lisok A, et al. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer[J]. Mol Pharm, 2018, 15(9): 3946-3952. doi: 10.1021/acs.molpharmaceut.8b00399

    [36]

    Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer[J]. Nat Med, 2018, 24(12): 1852-1858. doi: 10.1038/s41591-018-0255-8

    [37]

    Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer[J]. Nat Commun, 2018, 9(1): 4664. doi: 10.1038/s41467-018-07131-y

表(3)
计量
  • 文章访问数:  3799
  • HTML全文浏览量:  584
  • PDF下载量:  1783
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-11-10
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭