文章信息
- 范阳华,叶敏华,祝新根. 2015.
- FAN Yanghua, YE Minhua, ZHU Xingen. 2015.
- 粘合连接相关蛋白1在脑胶质瘤中的研究现状及进展
- Research Status and Development of Adherens Junction Associated Protein-1 in Gliomas
- 肿瘤防治研究, 2015, 42(09): 920-923
- Cancer Research on Prevention and Treatment, 2015, 42(09): 920-923
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2015.09.013
-
文章历史
- 收稿日期:2014-08-22
- 修回日期:2014-11-20
2.330006南昌,南昌大学医学院研究生院
2.Department of Medicine,Graduate School of Nanchang University,Nanchang 330006,China
脑胶质瘤是中枢神经系统最常见的原发性肿瘤,具有无控性增殖、侵袭性生长、易复发的特点[1]。其本质上是一种多基因异常疾病,由于原癌基因的过表达,同时伴随抑癌基因的突变缺失,从而使肿瘤细胞逃避了正常生长的调控机制。传统治疗方法(包括手术、化疗和放疗)并没有完全解决胶质瘤侵袭性生长所导致的高复发率和低治愈率难题。针对与脑胶质瘤发生、发展相关的基因异常治疗已成为研究热点[2]。
粘合连接相关蛋白1(adherens junctional associated protein-1, AJAP1),也称为SHREW1,是在具有侵袭性子宫内膜异位上皮细胞上发现的,与粘合连接相关的一种跨膜蛋白[3]。基因表达谱显示AJAP1位于与肿瘤抑制功能减弱密切相关的染色体1p36.32区域,近年来许多研究显示AJAP1缺失与脑胶质瘤进展有重要关系[4],AJAP1可能作为胶质瘤发生发展过程中起重要作用的抑癌基因。因此探讨AJAP1与脑胶质瘤的关系,将有助于了解脑胶质瘤的侵袭及增殖机制,为开展胶质瘤新的治疗方法提供理论依据,对临床具有重要的指导意义。
1 AJAP1的结构与定位AJAP1是具有411个氨基酸残基的完整跨膜蛋白,其结构包括一个可分割的N-末端信号肽(残基1-43)、细胞外结构域(残基44-282)、跨膜结构域(残基283-303)和细胞内胞质结构域(残基304-411)[5]。AJAP1符合NtraC模型要求的长信号肽的结构:N-氨基端的子域,一个β-转角丰富的过渡区,和一个C-羧基端的子域[6, 7]。Le等[8]通过共聚焦显微分析瞬时表达AJAP1,显示AJAP1定位于细胞基底膜上,而此长信号肽结构决定AJAP1在细胞中的定位,能够促使新生成的AJAP1靶向至粗面内质网后,转移并定位于细胞膜上。此外,Resch等发现单独的N-结构域主要使AJAP1靶向至线粒体,这个隐蔽线粒体靶向信号仅在某些生理条件下被激活,例如细胞凋亡[6, 7],Bharti等[3]对AJAP1蛋白序列分析揭示,AJAP1的细胞外结构域存在核定位信号及糖基化信号在细胞内胞质结构域中。
2 脑胶质瘤中AJAP1频繁表达缺失大多数脑胶质瘤肿瘤及胶质瘤细胞系中发现AJAP1表达降低[4, 9, 10, 11],Okawa等[9]利用微卫星和单核苷酸多态性技术分析430例初级神经母细胞瘤标本,发现其最小共同缺失位点位于1p36的2Mb的区域,并确定此区域中包含23个基因,其中包括AJAP1。White等[12]发现25%神经母细胞瘤的染色体1p36.3内有一个连续性缺失区域,而AJAP1为此缺失区域6个预测基因中其中之一。 Dong等[13]发现在少突胶质细胞瘤染色体1p36.31-p36.32之间存在最小缺失区域,其中包括AJAP1。Mcdonald等[10]评估177例少突胶质细胞瘤样本,发现了一大小约630 KB的共同缺失区域,此区域只包含基因AJAP1。Lin等[11]使用多个高分辨率基因组筛选方法,发现在许多胶质母细胞瘤(GBM)中AJAP1频繁缺失或表观遗传学沉默。神经母细胞瘤起源于神经嵴的原始多能交感神经细胞,是一种神经内分泌肿瘤[14]。胶质母细胞瘤是起源于星形胶质细胞的恶性程 度最高的肿瘤,属WHO Ⅳ级[15]。
此外,Han等[16]通过神经胶质瘤基因谱发现胶质瘤发生的早期阶段即存在AJAP1的缺失,表明胶质瘤的发生可能与AJAP1有关。由于共同起源的细胞可能具有共同的基因组变化,不同组织类型、病理等级、发展阶段的脑胶质瘤基因组均有AJAP1表达的缺失,说明AJAP1可能作为抑癌基因在脑胶质瘤的发生发展中起重要作用。
3 脑胶质瘤中AJAP1表观遗传学的改变大多数胶质瘤肿瘤和细胞系通过测序AJAP1剩余的等位基因,其编码区没有发现突变,提示AJAP1基因表达和杂合性缺失之间关系微弱[9, 10, 11]。在86%~92%的原发性高级别胶质瘤及所有神经胶质瘤细胞系发现AJAP1表达减少,而仅在16%的胶质瘤样本中发现基因突变,表明AJAP1表达下降常因表观遗传沉默,基因突变较少见[11]。
生物信息学分析揭示AJAP1的启动子中存在众多的CpG岛,CpG岛为甲基化调控基因表达的好发位点[15]。同时甲基化致使表观遗传沉默是许多肿瘤广泛使用的一种基因调控机制[17],AJAP1可能遵循的类似染色体P16肿瘤抑制基因,由于启动子甲基化促使基因表达下降,而基因突变概率较低[4]。Lin等[11]利用突变和甲基化分析证实AJAP1表达情况是由表观遗传学沉默的启动子甲基化所决定。Madhavan等[18]通过分析癌症基因组图谱数据库中253例少突胶质细胞瘤,显示AJAP1基因表达水平与AJAP1启动子甲基化有关,甲基化的程度与AJAP1表达成反比。
Lin等利用突变和甲基化分析证实AJAP1表达情况是由表观遗传学沉默的启动子甲基化所决定[11]。大部分胶质瘤细胞系中发现AJAP1启动子高度甲基化,而正常组织中AJAP1启动子CpG岛甲基化很罕见[4]。此外,胶质瘤细胞通过去甲基化剂AZA和TSA处理,能够有效逆转基因的这种沉默机制,有效恢复AJAP1表达水平,并显著减少胶质瘤细胞的迁移及侵袭能力[19]。以上表明AJAP1启动子的甲基化导致表观遗传学沉默,引起脑胶质瘤中AJAP1的表达降低。
4 AJAP1与脑胶质瘤生物学特性关系及相关机制Le等通过共聚焦显微分析瞬时表达AJAP1,显示AJAP1与内源性E-钙黏蛋白(E-cadherin)共定位于细胞基底膜上。Jakob等在体外实验中发现AJAP1可能通过β-连环蛋白(β-catenin)连接E-cadherin介导连接复合体[8, 20]。Chen等发现AJAP1的甲基化可能会导致β-连环蛋白的释放和Wnt信号转导的激活[21]。Gottardi等研究发现β-catenin包含armadillo重复结构,能够与转录因子等蛋白结合[22],其结合能力由酪氨酸激酶和丝氨酸激酶调节(如GSK-3)[23]。Liu等[24]发现Wnt等信号通路可以抑制β-catenin的GSK-3介导的磷酸化,使β-catenin移位至细胞核,与转录因子相互作用,调节基因的转录。 AJAP1通过β-catenin移位至细胞核内调节基因的转录,可能对细胞周期和细胞凋亡具有潜在作用。同时Zeng等[25]研究发现AJAP1在细胞核中调节MAGEA2基因的转录,调控P53通路增加caspase-3/7活性影响Bax/Bcl-2比值,表明AJAP1可以诱导线粒体相关的凋亡通路调节细胞增殖和凋亡。
此外,AJAP1可能通过β-catenin连接E-cadherin介导连接复合体[3, 20],AJAP1在极性细胞中通过E-cadherin-β-catenin复合体,具有改变GBM细胞形态的作用,E-cadherin通过相关蛋白如α和β连环蛋白(catenin)[21]介导连接细胞骨架(cytoskeleton)能够调节细胞黏附功能[16]。Gross等[26]通过共聚焦成像显示,AJAP1稳定转染GBM细胞,其细胞形态、F-肌动蛋白及β-微管蛋白分布均发生改变。F-肌动蛋白是黏着斑复合物的主要成分,对细胞黏附、迁移及促进丝状伪足形成均有作用。同时Han等[16]研究表明,AJAP1可以通过抑制丝状伪足延伸,减少丝状伪足生成,增加板状伪足和改变β-微管蛋白分布促使细胞骨架重组,使细胞网状结构变得松散,抑制细胞侵袭和迁移。
Mcdonald等[10]在胶质瘤细胞系中恢复AJAP1的表达,能抑制胶质瘤细胞黏附和迁移。与此相似,Cogdell等[4]发现在GBM细胞系中过表达AJAP1,明显抑制细胞的侵袭和迁移。然而,在非极化上皮细胞,AJAP1不会与钙黏蛋白复合物相互作用[27],AJAP1具有降低肿瘤细胞黏附的作用,在不同的肿瘤中可能有不同的临床结果[10]。此外,Mcdonald等[10]研究发现,AJAP1对胶质瘤细胞的抑制侵袭作用与细胞外基质成分有关,改变及缺失特定细胞外基质成分,AJAP1失去抑制细胞黏附的能力。这些研究表明,在特定的细胞类型及细胞外环境中,如脑胶质瘤细胞系,AJAP1在细胞-细胞和细胞-细胞外基质相互作用中有潜在作用,可能与细胞增殖、迁移及侵袭有关。综上,AJAP1对脑胶质瘤的发生发展、增殖、凋亡、侵袭及迁移有重要作用。
5 AJAP1与胶质瘤患者预后的关系Cogdell等研究分析美国国家癌症研究所的343例脑胶质瘤患者,发现AJAP1基因表达低下与患者存活率下降呈正相关,并揭示AJAP1基因产物与脑胶质瘤的进展相关[4]。于此相似,Han等通过多中心研究,发现AJAP1在脑胶质瘤与正常脑组织比较表达显著下降,低表达的AJAP1预示胶质瘤患者更低的生存率[16]。Ernst等利用星形细胞胶质瘤临床标本免疫组织化学提示AJAP1水平和患者生存情况及肿瘤等级显著相关[28]。Lin等发现AJAP1表达与脑胶质瘤的生存、肿瘤等级,密切相关,AJAP1的低表达预示恶性胶质瘤患者更差的预后[4, 11]。因此,AJAP1在脑胶质瘤与胶质瘤的预后关系密切,预示AJAP1可能是胶质瘤的潜在的诊断和预后评价指标。
6 结语综上所述,在脑胶质瘤中AJAP1作为一种抑癌基因,与胶质瘤的增殖、凋亡、侵袭、迁移及胶质瘤患者预后密切相关。AJAP1可作为一个有前途的胶质瘤治疗生物标志物,深入研究AIAP1在脑胶质瘤中的作用机制,将有助于了解脑胶质瘤的发生发展机制,为开展脑胶质瘤新的治疗方法提供理论依据,具有重要的临床意义。
| [1] | Alves TR, Lima FR, Kahn SA, et al. Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma[J]. Life Sci, 2011, 89(15-16): 532-9. |
| [2] | Castro MG, Candolfi M, Kroeger K, et al. Gene therapy and targeted toxins for glioma[J]. Curr Gene Ther, 2011, 11(3): 155-80. |
| [3] | Bharti S, Handrow-Metzmacher H, Zickenheiner S, et al. Novel membrane protein shrew-1 targets to cadherin-mediated junctions in polarized epithelial cells[J]. Mol Biol Cell, 2004, 15(1): 397-406. |
| [4] | Cogdell D, Chung W, Liu Y, et al. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma[J]. Chin J Cancer, 2011, 30(4): 247-53. |
| [5] | Resch E, Quaiser S, Quaiser T, et al. Synergism of SHREW1's signal peptide and transmembrane segment required for plasma membrane localization[J]. Traffic, 2008, 9(8): 1344-53. |
| [6] | Resch E, Hiss J A, Schreiner A, et al. Long signal peptides of RGMa and DCBLD2 are dissectible into subdomains according to the NtraC model[J]. Mol Biosyst, 2011, 7(3): 942-51. |
| [7] | Hiss JA, Resch E, Schreiner A, et al. Domain organization of long signal peptides of single-pass integral membrane proteins reveals multiple functional capacity[J]. PLoS One, 2008, 3(7): e2767. |
| [8] | Le Bivic A, Sambuy A, Mostov K, et al. Vectorial targeting of anendogenolls apical membrane sialoglycoprotein and uvomorulin in MDCK cells[J]. J Cell Biol, 1990, 110(5): 1533-39. |
| [9] | Okawa ER, Gotoh T, Manne J, et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas[J]. Oncogene, 2008, 27(6): 803-10. |
| [10] | Mcdonald JM, Dunlap S, Cogdell D, et al. The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration[J]. Cancer Biol Ther, 2006, 5(3): 300-4. |
| [11] | Lin N, Di C, Bortoff K, et al. Deletion or epigenetic silencing of AJAP1 on 1p36 in glioblastoma[J]. Mol Cancer Res, 2012, 10(2): 208-17. |
| [12] | White PS, Thompson PM, Gotoh T, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma[J]. Oncogene, 2005, 24(16): 2684-94. |
| [13] | Dong Z, Pang JS, Ng MH, et al. Identification of two conti guous minimally deleted regions on chromosome 1p36.31- rs[J]. Br J Cancer, 2004, 91(6): 1105-11. |
| [14] | Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy[J]. Nat Rev Cancer, 2013, 13(6): 397-411. |
| [15] | Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19(4): 764-72. |
| [16] | Han L, Zhang KL, Zhang JX, et al. AJAP1 is dysregulated at an early stage of gliomagenesis and suppresses invasion through cytoskeleton reorganization[J]. CNS Neurosci Ther, 2014, 20(5): 429-37. |
| [17] | Ling C, Pease M, Shi L, et al. A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype[J]. PLoS One, 2014, 9(4): e96178. |
| [18] | Madhavan S, Zenklusen JC, Kotliarov Y, et al. Rembrandt: helping personalized medicine become a reality through integrative translational research[J]. Mol Cancer Res, 2009, 7(2): 157-67. |
| [19] | Kim TY, Zhong S, Fields CR, et al. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma[J]. Cancer Res, 2006, 66(15): 7490-501. |
| [20] | Jakob V, Schreiner A, Tikkanen R, et al. Targeting of transmembrane protein shrew-1 to adherens junctions is controlled by cytoplasmic sorting motifs[J]. Mol Biol Cell, 2006, 17(8): 3397-408. |
| [21] | Chen YC, Huang RL, Huang YK, et al. Methylomics analysis identifies epigenetically silenced genes and implies an activation of beta-catenin signaling in cervical cancer[J]. Int J Cancer, 2014, 135(1): 117-27. |
| [22] | Gottardi CJ, Peifer M. Terminal regions of beta-catenin come into view[J]. Structure, 2008, 16(3): 336-8. |
| [23] | Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin[J]. Curr Opin Cell Biol, 2005, 17(5): 459-65. |
| [24] | Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins[J]. Curr Biol, 2005, 15(22): 1989-97. |
| [25] | Zeng L, Kang C, Di C, et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM[J]. Int J Oncol, 2014, 44(4): 1243-51. |
| [26] | Gross JC, Schreiner A, Engels K, et al. E-cadherin surface levels in epithelial growth factor-stimulated cells depend on adherens junction protein shrew-1[J]. Mol Biol Cell, 2009, 20(15): 3598-607. |
| [27] | Schreiner A, Ruonala M, Jakob V, et al. Junction protein shrew-1 influences cell invasion and interacts with invasion-promoting protein CD147[J]. Mol Biol Cell, 2007, 18(4): 1272-81. |
| [28] | Ernst A, Hofmann S, Ahmadi R, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival[J]. Clin Cancer Res, 2009, 15(21): 6541-50. |
2015, Vol. 42


