Advanced Search
SHI Xiangxiang, TANG Tao, CHEN Bin, PANG Haowen. Prediction Model of Parotid Mean Dose in Intensity Modulated Radiation Therapy on Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2017, 44(4): 253-256. DOI: 10.3971/j.issn.1000-8578.2017.04.003
Citation: SHI Xiangxiang, TANG Tao, CHEN Bin, PANG Haowen. Prediction Model of Parotid Mean Dose in Intensity Modulated Radiation Therapy on Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2017, 44(4): 253-256. DOI: 10.3971/j.issn.1000-8578.2017.04.003

Prediction Model of Parotid Mean Dose in Intensity Modulated Radiation Therapy on Nasopharyngeal Carcinoma

More Information
  • Corresponding author:

    PANG Haowen, E-mail:279165416@qq.com

  • Received Date: August 28, 2016
  • Revised Date: November 30, 2016
  • Available Online: January 12, 2024
  • Objective 

    To investigate the prediction model of parotid mean dose and D50% in intensity modulated radiation therapy (IMRT) on nasopharyngeal carcinoma (NPC).

    Methods 

    We selected 50 NPC patients who underwent IMRT, scanned the radiotherapy plan CT, analyzed the relationship between the parotid volume and its mean absorbed dose and D50%, and predicted parotid mean dose and D50% before planning IMRT.

    Results 

    There were significant correlation between Vparotid/Vparotid and Dmean/Dprescription (confidence coefficient=0.01, r=0.895), Voverlap/Vparotid and D50%/Dprescription (confidence coefficient=0.01, r=0.812). Matlab software was used to fit the correlation formula.

    Conclusion 

    For the patients who underwent IMRT, we can predict Dmean and D50% by Voverlap/Vparotid under the prescription according to the relevant mathematical model fitted in this study before making the radiotherapy plan, and reduce the impact of subjective factors in the radiotherapy plan optimization process, as a standard for assessing programs.

  • [1]
    Fang FM, Chien CY, Tsai WL, et al. Quality of life and survival outcome for patients with nasopharyngeal carcinoma receiving three-dimensional conformal radiotherapy vs. intensity-modulated radiotherapy-a longitudinal study[J]. Int J Radiat Oncol Biol Phys, 2008, 72(2): 356-64. doi: 10.1016/j.ijrobp.2007.12.054
    [2]
    Lin SJ, Pan JJ, Lu H, et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy: report on the 3-year outcome of a prospective series[J]. Int J Radiat Oncol Biol Phys, 2009, 75(4): 1071-8. doi: 10.1016/j.ijrobp.2008.12.015
    [3]
    Wong FC, Ng AW, Lee VH, et al. Whole-field simultaneous integrated-boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2010, 76(1): 138-45. doi: 10.1016/j.ijrobp.2009.01.084
    [4]
    Lee AW, Lau KY, Hung WM, et al. Potential improvement of tumor control probability by induction chemotherapy for advanced nasopharyngeal carcinoma[J]. Radiother Oncol, 2008, 87(2): 204-10. doi: 10.1016/j.radonc.2008.02.003
    [5]
    Lai S, Li WF, Chen L, et al. How Does Intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients?[J]. Int J Radiation Oncol Biol Phys, 2011, 80(3): 661-8. doi: 10.1016/j.ijrobp.2010.03.024
    [6]
    Kam MK, Teo PM, Chan RM, et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5): 1440-50. doi: 10.1016/j.ijrobp.2004.05.022
    [7]
    Lin SJ, Lu JJ, Han L, et al. Sequential chemotherapy and intensity-modulated radiation therapy in the management of locoregionally advanced nasopharyngeal carcinoma: Experience of 370 consecutive cases[J]. BMC Cancer, 2010, 10: 39. doi: 10.1186/1471-2407-10-39
    [8]
    Hunt MA, Jackson A, Narayana A, et al. Geometric factors influencing dosimetric sparing of the parotid glands using IMRT[J]. Int J Radiat Oncol Biol Phys, 2006, 66(1): 296-304. doi: 10.1016/j.ijrobp.2006.05.028
    [9]
    Kevin LM, Brame RS, Daniel A, et al. Experience-base quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2): 545-51. doi: 10.1016/j.ijrobp.2010.11.030
    [10]
    Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study[J]. Med Phys, 2013, 40(12): 121704. doi: 10.1118/1.4828788
    [11]
    中国鼻咽癌临床分期工作委员会. 2010鼻咽癌调强放疗靶区及剂量设计指引专家共识[J].中华放射肿瘤学杂志, 2010, 20(4): 267-9. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015007282.htm

    Working committee for the clinical stage nasopharyngeal carcinoma (NPC) in China. 2010 expert consensus of nasopharyngeal carcinoma IMRT target and dosage design[J]. Zhonghua Fang She Zhong Liu Xue Za Zhi, 2010, 20(4): 267-9. http://cdmd.cnki.com.cn/Article/CDMD-10003-1015007282.htm
    [12]
    Radiation Therapy Oncology Group. A phase Ⅱ study of concurrent chemoradiotherapy using three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) +Bevacizumab (BV) for locally or regionally advanced nasopharyngeal cancer (RTOG 0615)[R/OL].[2011-03-05].https://www.mdanderson.org/patients-family/diagnosis-treatment/clinical-trials/clinical-trials-index/clinical-trials-detail.IDRTOG0615.html.
    [13]
    Radiation Therapy Oncology Group. A phase Ⅱ study of intensity modulated radiation therapy (IMRT) +/-chemotherapy for nasopharyngeal cancer (RTOG 0225) [R/OL]. [2011-03-05].https://www.mdanderson.org/patients-family/diagnosis-treatment/clinical-trials/clinical-trials-index/clinical-trials-detail.IDRTOG-0225. html.
    [14]
    Zhu XF, Ge YR, Li TR, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning[J]. Med Phys, 2011, 38(2): 719-26. doi: 10.1118/1.3539749
    [15]
    Appenzoller LM, Michalski JM, Thorstad WL, et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning[J]. Med Phys, 2012, 39(12): 7446-61. doi: 10.1118/1.4761864
    [16]
    Yang Y, Ford EC, Wu B, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection[J]. Med Phys, 2013, 40(1): 011709. doi: 10.1118/1.4769424
    [17]
    Moore KL, Brame RS, Low DA, et al. Experience-based quality control of clinical intensity-modulated radiotherapy planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2): 545-51. doi: 10.1016/j.ijrobp.2010.11.030
  • Related Articles

    [1]XIE Liang, LIU Chang, LI Jianhua, LI Jianhui, HAO Xin, HUA Haiyang. Risk Factor and Risk Prediction Modeling of Rectal Neuroendocrine Tumors[J]. Cancer Research on Prevention and Treatment, 2025, 52(7): 598-604. DOI: 10.3971/j.issn.1000-8578.2025.24.1089
    [2]YANG Rong, FANG Bin, ZHENG Lingling, CHEN Jinhua, ZHOU Wenjuan. Exploring Risk Factors for Primary Liver Cancer in Patients with Chronic Hepatitis C Based on Machine Learning Prediction Models[J]. Cancer Research on Prevention and Treatment, 2024, 51(12): 1015-1020. DOI: 10.3971/j.issn.1000-8578.2024.24.0590
    [3]LIU Chenghao, LU Ting, QIAN Fang, XU Yuanbing, HU Chaohua, SHEN Haoyuan. Establishment of Risk-Prediction Model for Axillary Lymph-Node Metastasis in Microinvasive Breast Cancer Based on SEER Database[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 750-755. DOI: 10.3971/j.issn.1000-8578.2024.24.0100
    [4]XIAO Yuxuan, LI Zhuoying, SHEN Qiuming, XIE Li, XIANG Yongbing. Progress of Risk Prediction Model for Liver Cancer in Population-Based Cohort Studies[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 711-717. DOI: 10.3971/j.issn.1000-8578.2024.24.0629
    [5]LIN Junsheng, YING Ziling, HUANG Zhengyuan, ZHU Xianjin, CAO Yingping, LU Pingxia. A Prediction Model for Colorectal Adenoma and Colorectal Cancer Based on Routine Test[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 353-360. DOI: 10.3971/j.issn.1000-8578.2024.23.1169
    [6]DU Shuxiang, GUO Zhen, CHEN Zilai, WANG Shangxin, WU Gang. Risk Factors and Establishment of Prediction Model for Preoperative Lymph Node Staging Deficiency in Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 498-504. DOI: 10.3971/j.issn.1000-8578.2023.22.1254
    [7]WU Qiong, MA Junyan, DONG Liang, LI Chunyang, WANG Zhiwu. Prediction Model of Treatment Effect of Anlotinib on Extensive-stage Small Cell Lung Cancer Based on Combination of Disease and Syndrome Information[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 483-489. DOI: 10.3971/j.issn.1000-8578.2023.22.1373
    [8]XU Jiaxuan, ZUO Yifan, SUN Jingjing, CHEN Bing. Prognostic Analysis of Socioeconomic Factors in Multiple Myeloma Patients and Construction of A Myeloma-specific Survival Prediction Model[J]. Cancer Research on Prevention and Treatment, 2023, 50(4): 370-377. DOI: 10.3971/j.issn.1000-8578.2023.22.1075
    [9]LIU Ying, XIE Bin, WANG Meng, LI Yiran, YAN Wenjin, XU Xingxiang, MIN Lingfeng. A Survival Prediction Model of Pulmonary Sarcomatoid Carcinoma Based on SEER Database[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 853-858. DOI: 10.3971/j.issn.1000-8578.2021.21.0259
    [10]PANG Haowen, SUN Xiaoyang, YANG Bo, SHI Xiangxiang. Relationship Between Bladder and Rectum Volume and Its Absorbed Dose of Radical Intensity Modulated Radiotherapy on Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2016, 43(1): 63-66. DOI: 10.3971/j.issn.1000-8578.2016.01.014

Catalog

    Corresponding author: PANG Haowen, 279165416@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (2206) PDF downloads (599) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return