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Abstract: In situ tumor vaccine has become an important strategy in cancer immunotherapy owing to its
ability to induce immune responses locally and overcome tumor heterogeneity. However, the abnormal
structure and mechanical properties of the tumor’s physical microenvironment significantly limit the
efficiency of vaccine delivery and immune efficacy. In this review, the key factors in the tumor’s physical
microenvironment, including solid pressure, interstitial fluid pressure, matrix stiffness, and tissue
microstructure, are systematically discussed. Their obstructive roles in immune cell infiltration, antigen
presentation, and immune activation are analyzed. The potential of approaches, such as radiotherapy, anti-
angiogenic therapy, extracellular matrix degradation agents, nanomaterials, and hydrogel delivery platforms,
in reshaping the tumor’s physical microenvironment is explored. This review aims to offer theoretical and
practical guidance for optimizing in situ vaccine strategies through the regulation of the tumor’s physical
microenvironment, ultimately advancing the precision and effectiveness of cancer immunotherapy.
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