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Abstract: Genitourinary system tumors, as a major clinical challenge posing a serious threat to human health,
urgently  require  breakthroughs  in  the  construction  of  a  precision  diagnosis  and  treatment  system.  The
innovative  application  of  molecular  imaging  technologies,  particularly  the  development  of  novel  molecular
probes,  is  revolutionizing  the  diagnostic  and  therapeutic  paradigms  for  urinary  tumors.  The  application  of
novel  molecular  probes  in  the  early  diagnosis  and  staging  of  genitourinary  tumors,  the  role  of  multimodal
molecular  imaging  probes  in  guiding  precision  surgery/radiotherapy,  and  the  clinical  translation  challenges
and strategies for theranostic-integrated probes are systematically reviewed in this article to provide valuable
insights and references for related research and clinical practice.
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摘　要：泌尿系统肿瘤作为严重威胁

人类健康的重大疾病之一，其精准诊疗

体系的构建亟待突破。基于分子影像
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技术的创新应用，特别是新型分子探针的研发，正在重塑

泌尿肿瘤的诊疗范式。本文系统综述新型分子探针在泌尿

肿瘤早期诊断与分期中的应用、多模态分子影像探针引导

精准手术/放疗及诊疗一体化探针临床转化挑战与策略，旨

在为相关研究和临床应用提供参考。

关键词：分子探针；泌尿系统肿瘤；精准诊疗；多模态
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0    引言

泌尿系统肿瘤作为全球范围内的高发恶性肿瘤

类型，其疾病负担呈现持续增长态势。根据世界卫

生组织（WHO）2022年全球癌症统计数据显示，

前列腺癌、膀胱癌和肾癌的年新增病例分别达到

141万、57万和43万例，其中前列腺癌在男性恶性

肿瘤发病率中位居第二，膀胱癌则是泌尿系统致死

率最高的癌种之一[1]。中国国家癌症中心2023年发

布的报告进一步指出，我国泌尿系统肿瘤的年龄标

化发病率较20年前上升了68%，且存在显著的城乡

差异与早期诊断率不足的问题[2]。尽管传统诊疗手

段（如影像学检查、组织病理学分析）在临床中广

泛应用，但泌尿系统肿瘤的高度异质性、早期症状

隐匿性以及耐药复发等问题，仍对精准诊疗提出了

迫切需求。以膀胱癌为例，约30%的非肌层浸润性

肿瘤患者术后5年内进展为侵袭性癌，而现有影像

技术对微转移灶的识别敏感度不足50%[3]。这一现

状亟需通过技术创新突破诊疗瓶颈。

分子影像（Molecular imaging）技术作为精准

医学领域的关键核心工具之一，在肿瘤诊疗中发挥

着极为重要的作用。该技术借助分子探针（Mol-
ecular probe），将具有特异性靶向功能的分子、能

够报告信号的基团以及具备特定功能的载体进行模

块化整合，进而达成对肿瘤分子特征的可视化识别

以及动态调控。与传统解剖成像方式相比，其显著

的核心优势在于能够突破仅关注解剖结构的局限，

深入到分子层面，对肿瘤所呈现出的代谢异常状

态、受体过表达现象或者基因突变特征展开精细解

析。分子影像是一种通过特异性分子探针无创可视

化活体内生物过程的先进技术，结合PET、MRI、
光学成像等多模态手段，在分子水平揭示疾病机

制[4-6]。在泌尿系统肿瘤领域中，分子探针技术已广

泛应用于癌症的早期诊断（如PSMA-PET/CT检测

前列腺癌）、术中导航（近红外荧光标记肾癌边

界）及靶向治疗（载药探针精准杀伤膀胱癌细

胞），极大地推进了癌症精准诊疗的发展[7]。

1    新型分子探针在泌尿肿瘤精准诊疗和分期中的

应用进展

分子探针作为分子影像领域的基石与核心要

素，是一类借助化学手段或生物工程技术构建而成

的功能化工具。其核心设计理念依托 “靶向识别-信
号转导” 机制，该机制赋予分子探针特异性结合生

物标志物的能力，进而实现对生物过程的动态可视

化监测以及功能调控[8]。典型分子探针由三部分构

成：（1）靶向分子（如抗体、多肽、适配体），

用于识别肿瘤特异性抗原或核酸序列；（2）报告

基团（如荧光染料、放射性核素、纳米颗粒），提

供可检测的物理化学信号；（3）功能载体（如脂

质体、聚合物），优化探针的体内递送效率与稳定

性[9]。相较于传统探针，新型分子探针优势在于超

高敏感度（可达皮摩尔级检测限）与多模态成像协

同能力。随着单细胞测序技术和空间转录技术的发

展，新一代探针正朝着多靶点协同、智能响应及实

时监测的方向发展。

泌尿系统肿瘤的生物学行为异质性强，对于前

列腺癌来说，PSA检测特异性不足（约30%假阳性

率），穿刺活检存在出血、感染风险，且约20%的

临床显著性癌灶被漏诊[10]。膀胱癌尿液细胞学检测

敏感度仅30%~60%，膀胱镜检查虽为“金标准”，但

患者耐受性差，难以重复用于动态监测[11]。约30%
的微小肾肿物（<4 cm）影像学特征不典型，良恶

性鉴别困难，易导致过度治疗或延误干预[12-13]。此

外传统分子探针的靶向效率也受肿瘤异质性影响显

著。Nectin-4在膀胱癌Luminal亚型中高表达，但在

Basal亚型中阳性率不足40%[14]。临床需结合分子分

型（如Luminal/Basal分型）选择探针，避免单一靶

点漏诊。前列腺癌神经内分泌分化患者PSMA表达

缺失率高达30%，需开发替代靶点（如SSTR2）[15]。

另外泌尿系统的生理屏障，尤其是尿液冲刷效

应和高度特化的尿路上皮屏障（低渗透性、紧密连

接、刚性顶膜、表面糖萼），是制约探针有效递送

的核心挑战。这些屏障虽然对保护泌尿系统至关重

要，却使得将诊断探针、治疗药物或基因编辑工具

高效、特异地递送到泌尿系统的特定细胞或组织内

部变得异常困难[16]。成功的探针递送策略必须综合

考虑延长驻留时间、增强屏障穿透能力、抵抗尿液

环境影响以及实现精准靶向等多方面因素。新型分

子探针技术通过靶向提高探针靶向效率、开发新靶

点、增加探针驻留时间、增强探针穿透能力以及联

合多设备成像的方式等为突破上述瓶颈提供了全新

路径。
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1.1    靶向泌尿系肿瘤的分子探针设计

靶向分子探针的研发策略构建于对泌尿系统肿

瘤相关膜抗原特异性识别分子机制的深入理解之

上。以前列腺癌诊疗领域为例，前列腺特异性膜抗

原（Prostate specific membrane antigen, PSMA）作

为一种Ⅱ型跨膜糖蛋白，呈现出显著的肿瘤特异性

表达模式。在正常前列腺组织中，PSMA呈基础性

低表达水平，其表达量通常低于0.1 ng/mg；然而，

在进展期前列腺癌以及转移灶中，PSMA表达水平

出现高达1 000倍的上调[17-18]。PSMA在病理状态下

的特异性过表达使其成为抗体偶联探针（Antibody-
drug conjugate,  ADC）理想的靶标。基于这一特

性，研究人员开发出了诸如DCFPyL等小分子抑制

剂[19]，能够借助谷氨酸羧肽酶介导的特异性结合机

制，实现对PSMA的高效靶向，为前列腺癌的精准

诊疗提供了新的有力工具。在肾细胞癌分子显像研

究中，碳酸酐酶IX（CAIX）作为缺氧诱导因子-
1α（HIF-1α）调控的关键效应分子，在肿瘤乏氧微

环境中呈现特异性高表达[20-21]。该锌依赖性金属酶

在VHL基因缺陷型肾癌中的表达水平与肿瘤分级呈

正相关[22]。基于其肿瘤特异性表达特征，靶向CAIX
胞外催化结构域（PG domain）的单克隆抗体已成

功构建高亲和力（nM级）抗体-核素复合探针[23]。

在膀胱癌诊疗领域，由于膀胱癌细胞高表达CD47，
CD47抗体识别膀胱癌细胞系能力强，CD47靶向光

学分子成像检测膀胱癌准确性高，有手术导航价

值[24-25]；基于Nectin-4的纳米探针通过酸敏感型可

断裂连接子的创新设计实现了靶向药物递送[26]。该

连接子在肿瘤微环境酸性条件（pH 6.5~6.8）下可

特异性触发阿霉素（DOX）释放，体外实验证实

其药物释放效率达83.7%±5.2%[7]。

1.2    新型分子探针助力前列腺癌精准分期

Evangelista等 [27]研究表明，18F-胆碱PET/CT在
前列腺癌的淋巴结和骨转移检测方面展现出较高的

诊断性能。该技术可减少约8%不必要的扩大淋巴

结清扫，并且对患者5年总生存率有4%的提升效

果，为在前列腺癌分期诊断中停用传统成像方式提

供了有力支持。成功开发的双靶向PSMA和SSTR2
放射性示踪剂[68Ga]Ga-1和[68Ga]Ga/[177Lu]Lu-2，有

助于对神经内分泌分化前列腺癌 （Neuroendocrine
prostate cancer, NEPC）患者的诊断和放射配体治

疗[15]。Murthy等[28]发现，PSMA-PET在前列腺癌的

初始分期诊断中发挥着重要作用。PSMA-PET能够

更为清晰地显示前列腺内肿瘤、盆腔淋巴结病变以

及远处转移情况，从而对手术和放疗决策产生影

响。但仍需明确其对放疗后复发率和总生存率的影

响。此外，探究PSMA-PET在其他恶性肿瘤诊断和

分期中的应用疗效，同样具有重要意义。

1.3    基于CAIX的肾癌靶向诊疗策略

透明细胞肾癌（Clear cell renal cell carcinoma,
ccRCC）作为一种常见的肾脏恶性肿瘤，其诊断和

治疗策略的优化至关重要。近年来，针对ccRCC的

[68Ga] Ga-NY104 PET/CT这一CAIX靶向探针展现

出卓越的性能。该探针具有极高的敏感度（可达

95%）和特异性（高达100%），能够显著提升转

移灶的检出概率，为透明细胞肾癌的精准分期提

供有力依据，进而指导临床制定更为合理的治疗决

策[29]。在治疗策略的创新方面，哈尔滨医科大学徐

万海团队提出了一种新颖的Recognition-Reaction-
Aggregation（RRA）级联策略，通过靶向肾癌细胞

膜上的CAIX，在细胞膜原位构建肽基超结构，以

此来增加细胞膜的通透性，促进化疗药物的摄

取，为提高ccRCC的化疗效果提供了新的途径[30]。

此外，Kleinendorst等[31]研究发现，靶向放射性核素

治疗（Targeted radionuclide therapy, TRT）通过特

异性靶向在ccRCC中高表达的CAIX，能够实现精

准放疗。Yao等 [32]开发了基于刷状大分子设计的

NIR-Ⅱ探针FBP 912，同时实现10倍亮度提升与3倍
血液循环延长，显著提高了肾缺血损伤早期诊断和

肿瘤靶向成像的敏感度。综上所述，靶向肾癌新型

分子探针不仅在肾癌的早期诊断和早期监测方面具

有重要价值，还为肾癌的精准治疗提供了新的思路

和策略。

1.4    新型分子探针助力膀胱癌精准诊疗

Sweeney等 [33]报道了介孔二氧化硅纳米颗粒

（Mesoporous silica nanoparticles, MSN）在膀胱癌

诊疗领域的应用。该纳米颗粒经膀胱癌特异性肽

cyc6功能化修饰，并通过掺入Gd2O3作为MRI造影

剂。凭借与肿瘤细胞的高效结合特性，在T1和T2
加权MRI以及荧光膀胱镜观察中，可使肿瘤边界呈

现得更为清晰。Guo等[34]通过设计靶向肿瘤微环境

中胶原蛋白的探针CA-P，成功突破了传统探针依

赖单一细胞靶点的局限，显著提升了对异质性肿瘤

的检测效能。该探针具有94.1%的敏感度以及良好

的稳定性，延长了探针在膀胱内滞留时间，提升了

肿瘤摄取率，有望有效减少术中肿瘤残留，降低术

后复发风险，尤其是对于早期Tis期肿瘤的检测有

重要意义。在膀胱癌治疗策略的探索上，Fukus-
hima等[35]学者设计的探针NIR-PIT展现出独特的优

势。对于Nectin-4高表达的Luminal亚型膀胱癌（该
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亚型在非肌层浸润性膀胱癌中占绝大多数），NIR-
PIT疗效显著，有效克服了传统ADC治疗的耐药

问题。

2    多模态分子影像探针引导的精准手术和放疗

实践

单一模态成像在敏感度、分辨率或特异性方面

存在固有局限[36]，如光学成像敏感但组织穿透力

差，PET、SPECT虽然敏感性高，但空间分辨率

低，MRI具有良好的软组织分辨能力，但敏感性较

差。应用单一成像技术可能会造成肿瘤诊疗过程中

的一些误判。为克服单一成像模式的不足，融合多

种成像技术的多模态分子影像技术已成为肿瘤分子

影像学发展的重要趋势。多模态成像利用两种或多

种成像模式对同一物体进行成像，通过将光、声、

核、磁等技术综合集成应用，从而获得更加全面精

确的信息，具有突出优势：首先，它能实现功能代

谢信息与精细解剖结构的精准匹配，例如PET的高

敏感度代谢信息与CT/MRI的高分辨率解剖图像的

融合，使病灶定位更加准确；其次，通过整合不同

成像模式的互补信息，可以更全面地评估肿瘤的异

质性、微环境特征和治疗反应；再者，多模态成像

能够克服单一成像的不足并为临床决策提供更可靠

的依据[37-39]。如Baranski等发现 68Ga-Glu-urea-Lys-
HBED-CC-IRDye800CW具有高且快速的PSMA特

异性肿瘤富集和快速背景清除的特点，其放射性核

素（68Ga）提供全身代谢信息，同时近红外荧光基

团（IRDye800CW）实现术中实时导航，在术前、

术中和术后检测肿瘤方面具有较大潜力[40]。

2.1    多模态影像助力术中实时导航

借助多模态分子影像技术，可实现术中实时导

航。在术中，利用不同模态成像分子标记的分子探

针，配合术中多模态成像设备，医生能在手术过程

中实时追踪肿瘤位置，引导手术器械精准操作，尤

其在复杂的解剖结构中，提高手术的安全性和精准

性，减少对周围正常组织的损伤。Lütje等[17]评估了

使用抗PSMA单克隆抗体D2B进行前列腺癌多模态

成像引导术中成像的潜力，注射 In-DTPA-D2B-
IRDye800CW缀合物两天后，腹膜内表达PSMA的

肿瘤可以用两种成像方式进行特异性可视化。随后

的图像引导切除显示了在体内对所有腹膜内肿瘤病

变进行完全多模态引导切除的可行性。针对尿路上

皮癌多模态成像，Baart等[41]开发出一种针对尿激酶

型纤溶酶原激活剂受体（uPAR）的人源化近红外

（NIR）分子成像示踪剂MNPR-101-IRDye800CW

（MNPR-101-800F）。MNPR-101-800F对uPAR的

结构域有高亲和力，在体内能特异性识别肿瘤，肿

瘤与背景比高，可引导手术，且在光声成像中肿瘤

信号强。

2.2    肿瘤边界界定和淋巴结转移检测

传统手术确定肿瘤边界常依赖经验与解剖标

志，易残留肿瘤组织或过度切除正常组织。多模态

分子影像探针可特异性识别肿瘤细胞表面标志物或

肿瘤微环境特征，在术中清晰勾勒肿瘤边界。如使

用光声断层扫描（PAT）结合光学对比度和超声分

辨率优势，已有研究探索其用于癌症检测，系统评

估肿瘤切缘成像和界定肿瘤边界[42]。

淋巴结转移是泌尿系统肿瘤预后不良的重要因

素。传统影像学检测微小淋巴结转移存在局限性。

多模态分子影像探针可提高淋巴结转移的检测率。

Michalik等[43]使用新型磁荧光混合示踪剂进行术前

MRI显示前哨淋巴结（SLN）以及术中双模态SLN
识别的初步数据。术中切除了75个有磁性的SLN和

89个荧光SLN，磁性与荧光SLN检测为88%。Len-
nartz等[44]评估了光谱探测器CT（SDCT）衍生的碘

浓度（IC）对前列腺癌淋巴结转移的诊断价值，并

分析其与PSMA PET/CT的相关性。在肾癌手术中，

使用纳米颗粒标记的多模态探针，结合SPECT/
CT成像，能发现小于1 cm的转移淋巴结，帮助医

生准确判断淋巴结状态，决定是否进行淋巴结清

扫及清扫范围，避免不必要的手术创伤，改善患者

预后。

2.3    放疗靶区精准勾画、放疗剂量优化和放疗疗

效监测

多模态分子影像探针能提供肿瘤细胞代谢、增

殖等功能信息，辅助放疗靶区的精准确定。Chap-
man等[45]发现PET/CT融合在前列腺癌骨转移靶区勾

画中表现良好，PET/CT融合在减少观察者间差异

和提高一致性方面表现更优。在放疗中，融合成像

可发现常规影像检查难以检测到的微小转移灶和亚

临床病灶，使放疗靶区更精确，减少对正常组织的

照射剂量，降低放疗并发症的发生概率[46]。

根据多模态分子影像显示的肿瘤生物学特征，

可调整放疗剂量分布。对于肿瘤细胞增殖活跃、侵

袭性强的区域，给予更高剂量照射；对正常组织或

低活性肿瘤区域，降低剂量。在肾癌放疗中，通过

乏氧成像探针标记肿瘤乏氧区域，对乏氧区域加大

放疗剂量，提高放疗效果，同时保护正常组织，提

升患者放疗耐受性。Duffton等[47]评估了使用多模态

影像和无平坦滤波器（FFF）的立体定向消融放疗
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在前列腺癌管理中的可行性与安全性。41名低中风

险前列腺癌患者（初始前列腺特异抗原≤20 ng/ml，
Gleason评分6~7）接受治疗。所有患者的治疗计划

均成功覆盖了临床靶体积和计划靶体积。在放疗过

程中，多模态分子影像探针可实时监测肿瘤变化，

评估放疗疗效。通过对比放疗前后的影像，可及时

发现肿瘤退缩情况、有无新的转移灶出现等。如在

膀胱癌放疗中，利用动态对比增强MRI和分子探针

成像，观察肿瘤血流灌注和代谢变化，若发现肿瘤

对放疗不敏感，可及时调整治疗方案，避免无效治

疗，为患者争取最佳治疗时机。

3    诊疗一体化探针的临床转化挑战与策略

诊疗一体化探针在泌尿系统肿瘤精准诊疗中

展现出重要应用前景，但其临床转化仍面临多重挑

战。在技术层面，探针的精准设计与合成仍面临显

著技术瓶颈：现有探针在靶向特异性和检测敏感度

方面仍存在不足，尤其对微小肿瘤病灶（如直径<
1 cm的微转移灶）易出现信号衰减或假阴性结

果[48-49]；90%分子探针经泌尿系统排泄造成的非特

异性高放射性浓聚，是泌尿系肿瘤分子成像面临的

核心挑战之一[50]，主要导致邻近病灶被遮蔽、产生

伪影、降低诊断准确性，并迫使采用繁琐的应对措

施（利尿剂、延迟、导尿等）；同时，探针在体内

复杂生理环境中的稳定性亟待提升，部分探针可

能因酶解、氧化或非特异性吸附导致结构失稳，进

而影响其功能可靠性。在临床应用层面，安全性问

题尤为突出，探针的代谢动力学特征、潜在器官毒

性（如肾毒性）及长期生物相容性仍需系统性评

估；此外，临床操作缺乏统一标准，探针给药剂

量、成像时间窗及疗效评价指标在不同机构间存在

显著差异，严重制约了诊疗结果的可重复性与横向

可比性[4,18,51]。

为突破上述限制，需采取多维度策略：研发阶

段可通过材料科学、分子生物学、影像学与临床医

学的跨学科协作，优化探针的靶向模块与信号放大

系统，开发具有环境响应特性的智能探针[52]；同时

建立严格的质量控制体系，确保探针的批次间一致

性与体内稳定性。针对90%分子探针经泌尿系统排

泄而造成准确性的下降，开发排泄比例更低或排泄

途径不同的新型探针，是根本性的解决方案。例如

开发肝特异性或肝胆排泄占比较高的探针[53]；双排

泄途径探针平衡泌尿和肝胆排泄比例；开发肾脏滞

留时间短的探针快速通过肾脏进入膀胱，但也快速

随尿液排出体外，减少在泌尿道（特别是输尿管）

的滞留，降低干扰[54]；开发代谢稳定的探针避免在

体内分解成更小的、更容易被肾脏快速滤过的代谢

产物[55]。临床转化过程中，需开展多中心、大样本

临床试验，明确探针的药代动力学特征及不良反应

阈值，并基于循证医学证据制定标准化操作指南。

此外，需加强临床医师对分子影像技术的系统培

训，推动诊疗一体化探针从实验室向临床的精准转

化，最终实现个体化治疗目标。

4    展望

分子影像技术在泌尿系统肿瘤诊疗中展现出靶

向识别与功能调控的双重潜力，但其临床转化仍面

临关键挑战。此外，新兴技术如空间转录组学与类

器官模型的引入，将为探针靶点筛选提供更精准的

分子图谱，而纳米载体的仿生设计与代谢调控机制

的解析，有望突破探针递送效率与体内稳定性的限

制。最终，通过跨学科协同创新与临床转化路径的

优化，分子影像技术有望在泌尿系统肿瘤的早期筛

查、精准干预及动态监测中发挥更核心的作用，推

动泌尿系肿瘤诊疗迈向“可视化-可调控-可治愈”的
一体化新模式。
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