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Abstract: Gliomas, especially high-grade gliomas such as glioblastoma multiforme (GBM), are primary
malignant tumors of the central nervous system, characterized by high proliferative capacity, invasiveness,
and therapeutic resistance. The development of GBM relies heavily on continuous metabolic reprogramming
to adapt to the unique intracranial microenvironment, with nicotinamide adenine dinucleotide (NADY)
metabolic remodeling playing a pivotal role. Dysregulation of NAD" and its associated metabolic pathways
sustains increased intracellular NAD™ levels, which drive the malignant proliferation and invasive potential of
GBM, correlating with worsened patient prognosis. This review systematically summarizes the current
research landscape of NAD" metabolic remodeling in GBM, elucidates the mechanisms by which NAD"
contributes to GBM pathogenesis and progression, and explores the clinical potential of NAD -targeted
diagnostic and therapeutic strategies to provide novel insights and directions for the clinical management of
GBM.
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Figure 1 NAD" metabolic pathway in glioblastoma multiforme (GBM)
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Figure 2 Metabolic remodeling of NAD" in GBM and its related biological effects
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