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Abstract: Objective To explore the effect of miR-1-3p on the malignant biological behavior of human
esophageal squamous cell carcinoma cells and the potential mechanisms. Methods The Gene Expression
Omnibus (GEO) database was analyzed to screen differentially expressed miRNAs in esophageal squamous
cell carcinoma (ESCC). qRT-PCR was used to detect the expression of miR-1-3p in human ESCC cell lines
(KYSE30, KYSE150, KYSE410, KYSE510, and Ecal09) and normal esophageal epithelial cell line HET-1A.
CCK-8, wound healing, Transwell assays, and flow cytometry were applied to detect the effect of miR-1-3p
on the proliferation, migration, invasion, and apoptosis of ESCC cells. Bioinformatics tool was used to predict
the target genes of miR-1-3p. A Kaplan—Meier survival curve was drawn to analyze the correlation between
STC2 expression and overall survival of patients in the ESCC cohort of the TCGA database. Fluorescence in
situ hybridization was performed to verify the subcellular location of miR-1-3p in ESCC cells, and dual-
luciferase reporter gene assay was performed to validate the regulation of miR-1-3p on stanniocalcin 2
(STC2). RNA immunoprecipitation assays were used to detect the binding of miR-1-3p and STC2. Western
blot assay was performed to determine the effect of miR-1-3p on the expression of STC2 and endoplasmic
reticulum stress pathway-related proteins, including p-PERK, p-elF2a, and ATF4. CCK-8, wound healing,
Transwell assays, and flow cytometry were applied to detect the effect of STC2 overexpression and
knockdown on the proliferation, migration, invasion, and apoptosis of ESCC cells. Results The expression
of miR-1-3p was lower in ESCC cell lines than in HET-1A cells (all P<0.05). The transfection of miR-1-3p
mimic decreased the proliferation, invasion, and migration of ESCC cells (all P<0.05) and promoted the
apoptosis of ESCC cells (all P<0.001). Bioinformatics tool showed that STC2 was a target gene of miR-1-3p.
The expression of STC2 in ESCC tissues was higher than that in normal esophageal epithelial tissues in the
ESCC cohort of TCGA database and was negatively correlated with prognosis (all P<0.05). miR-1-3p was
located in the cytoplasm and can directly bind to STC2 mRNA. The transfection of miR-1-3p mimic
downregulated the expression of STC2, p-PERK, p-elF2a, and ATF4 (all P<0.05). The overexpression of
STC2 promoted the proliferation, invasion, and migration (all P<0.05) and inhibited the apoptosis of ESCC
cells (all P<0.05). Knockdown of STC2 inhibited the proliferation, invasion, and migration (all P<0.05) and
promoted the apoptosis of ESCC cells (all P<0.05). Conclusion miR-1-3p inhibits the malignant biological
behavior and promotes the apoptosis of
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# E. HE  F I miR-1-3pst AR % 8k s i % ( ESC-
C) iy Tk & M 5247 A 6 % ve B2 ST Ak 9 4 A ALkl .
Fik ARAAREEEHIEE (GEO) JHLESCCP £ Ak
#miRNA, 5 qQRT-PCR# M AESCC#1 lBKYSE30. KYS-
E150. KYSE410. KYSE5104=Ecal09& iE &% L & tu f
HET-1A ¥ miR-1-3p#) Ak K-F, CCK-8iXHA &, XRAS
FaTranswell 55 & vA B K, 40 oL K 4 %) 4] 4% 4 miR-1-3p
mimic* ESCCam e3¢ 76 . T Hfid £ . AT A0 Hh,
1 A A 4% B % T AN miR-1-3p#d ¥e L B, Kaplan-Mei-
ersk MBI A R 20 B ( TCGA ) 435 & F STC24 ik &
Pl H UG 6K A SR AFISHA M miR-1-3pad T 20 L&
£, A Kk F BER % A B B iEmiR-1-3p 5 STC24) ¥e. &) %
%o RNA%JZ i (RIP) %344 M miR-1-3phe STC249 4
4. Western bloti 44 # # miR-1-3p mimic* ESCC 4@ it
STC2% M it M i % 48 % % @ p-PERK . p-elF2a. ATF4% ik
KFag# o, CCK-8, RIJEAE. Transwell 52 3o Fo it X 4w
B R 5 A A ] it &k e SAKSTC23 ESCC4m AL 36 76 . i
B, BERFATRAGY R, BR  ESCCH L F miR-1-
3phy ik KK FHET-1A2 88 (39P<0.05), 3% #miR-
1-3p mimic™ # %] ESCCa fe 3§ 54 . T #H A1z 24t (3
P<0.05) , 23 ESCC%r A = (3 P<0.001) ., £ #4128
¥ T A FAMmiR-1-3p#) ¥2 4 B 4 STC2, ESCCHLL ¥ STC2
HEBRRFSTEFRF LEAR, 5FEZA4E (H
P<0.05) . miR-1-3pf2 T LA, T H 45 STC2 mRNA%Z
4 3 #miR-1-3p mimic™ FiASTC2. p-PERK. p-elF2a.
ATFA% G 8 %A K F (3 P<0.05) . if & A STC2T 42 i
ESCCfm 3§ sh . & foiz 2 fe 1 (35P<0.05) , 4]
ESCCam e A = (35P<0.05) . FAKSTC27T 474 ESCC4n it
¥, MR (3HP<0.05), RBESCCHRA =
(3 P<0.05) , #5i& miR-1-3pid i Fe & 94 32 STC247 )
ESCC#m ALty Tk A My 547 %, ARHESCCHMMMA =, THe
SR IR R R LR ARAER
K4 R F SR MM ; miR-13p; M5 E
2; R
hE4S%ES: R735.1
F R R (R R AR SS)PRIRAG(OSID):
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IRENAISE (esophageal squamous cell carcinoma, ES-
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1 #R5HE
1.1 Zuikk

NIEHEEE FEAEHET-1AM T g5
FHEYRE A RRATR, AESCCAIMKYSE30, KY-
SE150, KYSE410, KYSES10F1Ecal094yF i
kTR A,
1.2 k7

NEE A HET- 1A% 3 35 500 T i
HFTRET A YR A R AT, RPMI 164015573 |
G4 L3 . AR H A 3 LL 581 Biological Indu-
stries”y A}, SLRNA$E B 5] TRIzol, Lipofectam-
ine™ 300004 F & [HInvitrogen/ 7], S EIAF &
#H Hmarker% [ 2 [E Thermo Fisher/A 7, 51¥H L
AEY) TRARA A G, qPCRIEGHIIG A i
X)), Transwel/NE W H 2E[E Corning 3], FISH
A& . RIPAZYME . B-actinLiA Iy H BRI FELE/R
EYIRHE A R T, CCKSIRF & . BCAIRHI & .
PUATR R . ECLIR I F AR AE Y H AR A TR
N, TR & 3 BD Biosciences/A Hl, miR-
1-3p mimicFTmiRNA mimic NCH 7 JH 75 3 3 K iz
WA FRAFA M. STC2 mRNA 3'-UTR-WTHISTC2
mRNA 3'-UTR-MUT# 5 3% P Bk i [ i iCE A
YIRHE A BRA R . RIPIFI & A ) a4 F
HARAF, STC2, Ago2Pii&lly H 3 E Abcam/A
H), PERK. p-PERK. p-elF2adi il [ V155 36 R}
YIRS POEBRA ], elF2a. ATF4HLIAIN b
AL EFEARGRRA T, p-ATF4HLIRIE H 2
BT YR A BRA R, HRPII AT — il
FAbERIAFREAE R A A
1.3 SRk
1.3.1 ESCCHe st HBHRRM AT IR R
B SCEGEO ( https://www.nebi.nlm.nih.gov/geo/ )
T#GSE114110. GSE55856. GSE59973HIGSE43-
732 RNATLFESNVEHREE , 4B ES R LAY
IESCCHE# . HRIE T Mlimmafd i BE ESCCZH 21
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T HCTE X i 55 4 4 2% 5 3 IK ImiRNA, - i %8 4%
1+ Jlog,FC>2, P<0.05. M\JEEAE 3k PR 2 [ 3% B i
JETCGA ( https://portal.gdc.cancer.gov/ ) ¥ & 4
I A5 1 2t i AL B0 I IR A B, RIS 1Y
DESeq2fi i i ESCCLL LU 557 41 21 1 25 5 ik 3
, e seAt: [log,FCI>2, P<0.05, FIHIRIESHY
ggplot2 il K 1L & . i FomicshareF-15 ( https:/
www.omicshare.com/tools/ ) Zx1H|=F BLA .

132 MR, R Ko dH  TE3TC. 5%
COMEFRAE T FHHET-1A N4 | Bz 4 & 3%
FRILE MRS N E 848 LA BHET-1A, {HH
T10% R4 T . 1% 7 55 2 FIHERE 2R YRPMI 1640
B 9% e w ML 1% FRKYSE30. KYSE150, KYSE410,
KYSES510F1Ecal094ffifl, #% & Lipofectamine™ 3000
UEEA A3 20 B, B E AR K B4 i, i A miRNA
mimic NC, miR-1-3p mimic, STC2 overexpression
NC. STC2 overexpressionl) zmiRNA inhibitor NC ,
miR-1-3p inhibitor, si-STC2 NC. si-STC243 %] %}
KYSE41040 M0 FIKY SES 1 0ZH il #1450, #5448 h
7, RFHQRT-PCRIEK IS YR

133 SERFOLE R A HEEE N ( real-time
fluorescence quantitative polymerase chain reaction,
qRT-PCR ) ¥ KM ESCCHH it ' miR-1-3p) ik 7K
o R TRIZoGEFERUAN AL ERNA, 54N
TR 4G &, f# F Thermo Fisher )2 % 51805
£ LAS pg B RNAN B, K RNAJ #% 55 H cDNA,
PAHecDNA MBI, LIU6E.GAPDH N NS IR, it
fFqPCRY"#8 , K W 4. 95°C S min, 95°C 10's,
60°C 20s, 72°C 20 s, FL40NEIR. B9 FFI .
miR-1-3pfIE M5 #7511 H5'-GCGCGTGGAATGT-
AAAGAAGT-3', x5 |[¥vs145'-AGTGCAGGG-
TCCGAGGTATT-3'; UG IE 15|45 R 5'-CTC-
GCTTCGGCAGCACATA-3', JZ [ 51 ¥ ¥ 51 H 5
AACGCTTCACGAATTTGCGT-3'; STC2iY1E 5]
Y51 }5'-CAGCGGGAATGCTACCTCAA-3', X
5 M5 5'-CACATTGCCATCCTTGCTGG-3';
GAPDHIWIE A5 #1751 5'-ACAACTTTGGTATC-
GTGGAAGG-3', K17 5|¥ ¥4 45 -GCCATCAC-
GCCACAGTTTC-3', RH2 * 2k A miR-1-3pFil
STC2MAHRTFIRK- . T 3K,

1.3.4  CCK-87% K M miR-1-3pXf ESCCZH fits 14 514 fiE
JIHgsE ] BB K I Y 45 ZH K Y SE4 104 it 11
KYSES1040H, %% B 225101, HX100
uWHEF Fo6fLil, WENEIL, [ E10%G4
L5 FIRPMI 16403557 He35 57 B A BEfS , 43 5]
TR 1~4K, SRR EIFRLIAL00 nl &

10% CCK-8ixk 7 () RPMI 164035 35 &, 7E37°C.
5%CO S FRAR T H MIEE 1 b, FHBEAR ORI 25
FLFE450 nmif KAWL

1.3.5 R A S KM miR-1-3p X ESCCAH i i
he1nuse ) BON AR Y 45 LK Y SE4 104
M FIKYSES 1040 L, 18 %% % i b B 2 TF 7% 104>,
B mUZFT6fLA, BEE3INR AL, FE6fLAR S i
3FTATEMRIC, SAIMERL S EEIR90% T, FH200 ul
TG P i i B8 VR S A 40 B R 1 A e B T R EA T
RN, HIPBSHRIR3IK, BN A A MG
FIRPMI 16405555 54E37°C . 5%CO, 35346 T i M
Hi7%, 433170 hFn24 hrefE & WA TSI,
1.3.6  Transwell% 45 46l miR-1-3p X ESCCAH il i
BRZZERE I RE M UGB K 4 41K Y S-
E41040 i fIKYSES1040Af, AN & f 4 135 IR P-
MI 164035 5 545 20 i 2 32 4 5% 122 2% 10°4
B2200 pl4ZFh T Transwel/NE Y %, KR 72168
S $ET FHMatrigel 3 5t B £ 8 Transwel VN |9 I
%, WE3INES, TENE20%M45 107 HRPMI
1640853758, TE37°C . 5%CO 3740 rh i ML 3524
hWEBUH/NE, 72 BEWR, PBSTR)E HIARZ
Bk =P RRENEE S, 4% B
[E %30 min, PBSPEGE HO0.1%%4% 544 (710 min,
PBSYE i 5 7 45 B I B T B AL 328 B3 #1L BF 40
MR, GEiT o IR A

1.3.7 W4 ARAS I miR-1-3p Xt ESCCHH L 1=
R B ZHKY SE4 1021 it FIKY SES 1021 fifd
PR RE A B R R TE 11077, HR100 pl 4 i Bk
InZ 74, 7F Annexin V-FITC/PLIA W 77 ) W 15
min, JIAZESZZPRERE 1 h, 3 SO 41
JPATAF O, Gei TR T A R T A AR A o
ZHAWE TR

1.3.8  ZOUENAZSLH AR (FISH) AillmiR-1-3p7E
ESCCHiffd P i AW Ebric i miR-1-3pHEt
A TR AR AR DR A IR Wl B R E i, 1R
¥F%5 . 5-ATACATACTTCTTTACATTCCA-3',
KYSE41040 il FKY SE5 1040 fifd 75 £ Hi A 5 3% A
24F LA 7%, o dE M Rl BE TR 50% 452 1R B 5%
PBSYE i J5 Fl 4%2 3 H 1 % IR [5] %2 15 min, PBS
PRI A % 77 S TR 10 min, PBSPER)S F T
Y JL 32 W40°C T 2= 2230 minfi , 41 ffl 5 miR-1-
3pIREMTE3TCA S, I Cy3fa il A Y& bnid
miR-1-3pfREr, AT FIDAPLE (5, #t i
BEMEL AT -

1.3.9 B¢ 2 W 45 56 4 52 46 50 iF miR-1-3p5
STC2MAE K5 HFSTC2:AER! (MUT ) iy
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AR (WT) S0 ok, @ AN g, K
KYSE41041f153 >~ 4 44: STC2 mRNA 3'-UTR-WT+
miRNA mimic NC, STC2 mRNA 3-UTR-WT+miR-
1-3p mimic. STC2 mRNA 3-UTR-MUT+miRNA
mimic NCHI STC2 mRNA 3'-UTR-MUT+miR-1-3p
mimic, FHKEINE L, HiF48 hig i Xt
FR AR S 10 B ARSI 240 B ) 5 R S 4 o
1.3.10  RNABZEULIE (RIP) 5256 A U miR-1-
3pMISTC2M S & WAEXTEUA: K K Y SE4 1041
FiL, ZHARLEEE 23101, FERIPZLMRZE ik rh 241
&, SREERVA K Ago2sl IgGHUIRTERE IR L4 CHFE
W, ESHTAIRSE RIS, PEFTqQRT-PCRAGN
DUEY) P miR-1-3pFISTC2AY & A 15 L .
1.3.11 Western blotf&;#llmiR-1-3pXFSTC2HIPA it ]
VA IR AR IR K sg e JRAR I AR A5 4
KYSE4104 it FIKYSES 1040, 43511 ARIPAZY
fR . B IR, BB LA R R A
BERREGPI I, PRI S M. BCATEIE T4
BEAER, K30 ughFEMZE10 min, &HT UK
A, RH12% SDS-PAGE/ R H T, K
Jii ¥ Z2PVDFE , Pk 5 1 % I 35 4130 min,
JinAB-actin (1:1000) . STC2 (1:1000) . PERK
(1:500) . p-PERK (1:1000) . elF2a (1:500) .
p-elF2a ( 1:500) . ATF4 ( 1:1000) . p-ATF4
(1:500) —HLT4CHF IR, TBSTHEIK (15
SEEPAR ), I AHRPERIC A I FE 05 —ht (1:
1000) ZiRMFE2 h, TBSTHEMEIWR (15504/K ) ,
KRHECLE W W5, 1 FHImage I #r EME
PIB-actin N2, LUK B 14570 1K BE(E 2
Fb 2R B AR R A

qRT-PCR. CCK-8. ¥JRA# . Transwell, Ji
AR . Western blot%E 525 /& 31K,
1.4 SGEit=erik

K FISPSS26.0, GraphPad Prism 8F1R4. 2% {4
TG AT ER . RIES A BT TR
XhsRoN, WAL FLRCR ek 36, A= A7 50 ok H
Kaplan-Meieri% , 7 40 8] A= A7 A5 (1] 719 L 482 R FH Log-
rankF 55 . K IRk fE0=0.05,

2 HZR

2.1 miR-1-3pZEESCCHI il Ik A
J3rGSE114110. GSE55856. GSE59973HIGS-

E4373250 54, & IAEESCCH L miR-1-3pff) 3

KPR TSR 8L (¥1P<0.05, K1),

llog,FC|H K i) miR-1-3pitt — A W 5% . R FH qRT-

PCRYZE £ I miR-1-3p7E ESCCHH fd H i) 22 35 7K -,

gE R 57K, miR-1-3p7E ESCCA I KYSE30, KYS-
E150. KYSE410. KYSE510F1Ecal094i ifl i) 7
KK R FHET-1A40 8 (¥P<0.05) . miR-1-
3pR ik AR YK YSE410FIKY SES 1041 g #8 FH 7° 3
(L
2.2 miR-1-3pHIHIESCCANMERYIESE . TR . RIE
fig

ESCCHIE /3 54 JemiRNA mimic NCHImiR-
1-3p mimic, qRT-PCRIEKMFEYLRR, 5 R TR,
miR-1-3p mimicZ] ESCCH il H' miR-1-3pff 3£ 15 7K
-7 FmiRNA mimic NC4{ ( ¥7P<0.001, [K2A),
FWIFEKYSE410F1KY SES 1044 fitd H okt 1y 2 ~7 1k 52
IAmiR-1-3pAY 4l IR,

CCK-8. XIJE A& fl Transwell 25 56 45 5B 7R,
5 miRNA mimic NCAAHE, miR-1-3p mimicZIKY-
SE410HIKYSES 1040 M 345 . BB MR 286813y
W EREAK ($P<0.05, K2B~D) . DI 45 F Ui
miR-1-3p ] i I ESCCAN M p 345 . R AR
ZEfie )1, TEESCCH L% THE/EH .
2.3 miR-1-3pfEHFESCCHIIE T

$% %% JemiRNA mimic NCHImiR-1-3p mimicH
ESCCH M it A7 i U f AR K, 25 Won, 5
miRNA mimic NCHAH I, miR-1-3p mimicZHKYS-
E410F1KYSES 1040 M i 8 TR ¥ 8 & (#p<
0.001) , WLIK3. 3 miR-1-3phE %12 #EESCCLH
MagE T
2.4 STC2/EmiR-1-3pHYIEH , FEESCCHIZ i
Fik, HEZAHX

i 1 7E 26 AR W 15 B 2= 88 % ( TargetScan
microT, miRanda, miRmap. PITA. PicTar) Fijlll
miR-1-3p NI TELS G S48 1 R Ay
113miR-1-3p Al RE PR ¥ ¥ S A ( [K[4A) o TC-
GABEFEESCCRAIN 4 Hr 4 KW, SIEHEE L
KLU, ESCCAHZITA 1371F kKT LM
()R RN 28440 Kk K T I AT R ([B14B) o
Lt BT R4, HARUSTC2 R iR
B (FE4C) , BIRSTC2M] fig & 5 miR-1-3p4E &
()T RS A

TCGAKUIE R4y Hr 45 R 3R W], STC27EESCCA
gihig ik (¥P<0.05) , ULE4D~F, Kaplan-Me-
fer E A7 4R M R STC2/ #ik FRH IOS S TC2
RFEAHRFE T (P<0.01, K4G) , ROCHIZ4E
7RSTC2AE WA Jy T ESCC 5 & OSI At 57 21 M) b
B (P<0.001, E4H) . DL g5 R FHSTC27E
ESCCHm#ik, SHREHEARBEVIFL,



AYEER 381 512024F55515858H Cancer Res Prev Treat,2024,Vol.51,No.8

GSE114110

miR-139-5p %

=5 0 5

Log, Fold change
GSE59973
4 f ¥
34 miR-139-5p 2

—Log,, P value

Log, Fold change

GSE55856
g 601 H;
= bWl miR-139-5p, | k0
Z 40 gt Wiy « Down
& el No sig
e 58 +Up
3 20
! miR-1-3p
-6 -3 0 3
Log, Fold change
GSE43732

601miR-139}5p :
g i
< nfiR-1-3 ;
> 40 f = Down
Q; H 4L No sig
o . . « U
5204 ! P

O reateiminin 'A-e-s.‘.,...i._ g

-2.5 0 2.5 5.0
Log, Fold change

* 659 -
B
GSE59973  GSE55856
GSE114110 GSE43732
o~ miR-1-3p
miR-139-5p
C 5 1.5
g
.2
§ &10
g *
Se
.g 205 FE g
E EETY
& 0 kKK
&,\?}3,“ ROTOIAN
SEEEY

A, B: volcano plots and venn diagram revealed differentially expressed miRNAs between ESCC tissues and matched normal esophageal epithelium
tissues; C: expression of miR-1-3p in human normal esophageal epithelium cell and ESCC cells. ***: P<0.001, **: P<0.01, *: P<0.05, compared with

HET-1A cells. sig: significance.

B 1 miR-1-3pZEESCCZA R F14A A R 3%
Figure 1 Expression of miR-1-3p in ESCC tissue and cells
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A: the expression of miR-1-3p after transfecting miR-1-3p mimic into KYSE410 and KYSE510 cells; B-D: CCK-8, wound healing, and Transwell
assays showed the effects of miR-1-3p on the proliferation, migration, and invasion of ESCC cells. ***: P<0.001, **: P<0.01, *: P<0.05.
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Figure 2 miR-1-3p inhibited proliferation, migration, and invasion of ESCC cells
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Figure 3 miR-1-3p promoted apoptosis of ESCC cells
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Figure 6 miR-1-3p inhibited the expression of endoplasmic
reticulum stress pathway-related proteins in ESCC cells
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A: predicted binding sites on miR-1-3p to sponge STC2 mRNA; B: FISH determined the subcellular localization of miR-1-3p; C: dual-luciferase

reporter gene assay validated the regulation of miR-1-3p on STC2; D: Ago2-RIP assay was applied to detect the expression of miR-1-3p and STC2 in
ESCC cells; E: Western blot showed the expression of STC2. **: P<0.01, *: P<0.05.
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Figure 5 miR-1-3p sponges STC2 mRNA 3'-UTR in ESCC cells
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A-C: CCK-8, wound healing, and Transwell assays showed the effects of STC2 overexpression on the proliferation, migration, and invasion of ESCC
cells. ***: P<0.001, **: P<0.01, *: P<0.05, ns: no significance.
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Figure 7 STC2 overexpression promoted proliferation, migration and invasion of ESCC cells
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Figure 8 STC2 overexpression inhibited apoptosis of ESCC cells
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A-C: CCK-8, wound healing, and Transwell assays showed the effects of STC2 knockdown on the proliferation, migration, and invasion of ESCC
cells. **: P<0.01, *: P<0.05, ns: no significance.
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Figure 9 STC2 knockdown inhibited the proliferation, migration, and invasion of ESCC cells



\ oo o oA
ADYBERH I 272024 F 5551455588 Cancer Res Prev Treat,2024,Vol.51,No.8 . 665
KYSE410 KYSE410
miRNA inhibitor NC miR-1-3p inhibitor miRNA inhibitor NC miR-1-3p inhibitor %
: +si-STC2 NC . +si-STC2 NC : +s1-STC2 : +s1-STC2
LU FoYRTS R fQI-uL QR | Toror “QI-UR R oy QI-UR 25 ns =
107 1.87% 070% | 1gsg 383% 1.07% 1053 5.42% 1.55% | 106] 481% . 1.52% <20 -
= 10°4 10°4 : 105 10° 15
104é 10° 10 1044 g10
)] 2] S ' : ’ <05
10°1Q1-LL QI-LR  10°2qI-LL QI-LR [ 10°1QI-LL QI-LR| 10°3Q1-LL QI-LR
395.58% 045% 1 9466% 0.64% | 3 92.58% 047% | | ]19326% 0.41% 0
102 10° 10* 105 10° 107 10* 10° 10 10° 10° 107 10 10° 10° 10° 10° 107 10* 10° 10 10° 10° 107 1 2 3 4
Annexin V-FITC
KYSE510 KYSE510
miRNA inhibitor NC miR-1-3p inhibitor miRNA inhibitor NC miR-1-3p inhibitor *
+si-STC2 NC i +si-STC2 NC +si-STC2 +si-STC2 15
107 TqoL Qi-ur |1 {q1uL q1-ur| 1 TqruL Qi-ur| ' Torur QI-UR ’
1064 027% 033% | 00] 041% 0.43% | {01 1.00% 0.73% | 106 1:58% 0.59% S
1 2 1.0
1053 10° 105% 10° 8
=1 : g
10¢ 1044 102 1044 2.0.5
T : P <
10°2Q1-LL QI-LR [10°§QI1-LL QI-LR| 10°2QI-LL QI-LR| 10°3Q1-LL QI-LR
g 120:03% 038% | 199.94% 0.23% | % 97.80% 047% | o 19727% 0.55% 0
10°10° 10 10° 10° 107 10° 10° 10° 10° 10° 107 10° 10° 10° 10° 10° 107 10> 10° 10° 10° 10° 107

Annexin V-FITC

*: P<0.05; ns: no significance. 1: miRNA inhibitor NC+si-STC2 NC; 2: miR-1-3p inhibitor+si-STC2 NC; 3: miRNA inhibitor NC+si-STC2; 4: miR-

1-3p inhibitor+si-STC2.
10 FY{RSTC2RFESCCHBLET

Figure 10 STC2 konckdown promoted apoptosis of ESCC cells
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