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Abstract: Metabolic reprogramming is one of the significant characteristics of malignant tumor development.
It provides the tumor with sufficient energy and materials. During the process by which tumor cells acquire
metabolic reprogramming, epigenetic changes play a crucial role. N6-methyladenosine (m6A) in mRNA is the
most common post-transcriptional modification of mRNA. It regulates the transcription, maturation,
translation, and degradation of mRNA. Studies have shown that m6A helps promote the metabolic
reprogramming of tumor cells. However, the complete mechanism still requires further research. METTLS3 is
a key enzyme for m6A methylation that catalyzes m6A progression by forming complexes with other
proteins, such as METTL14 and WTAP. Notably, the critical role of METTL3 in the metabolic transition of
gastrointestinal tumors has not been given due attention. This article summarizes the specific pathways
through which METTL3 affects the reprogramming of cellular glucose metabolism in gastrointestinal tumors.
We aimed to clarify the importance of METTLS3 in the energy reprogramming of gastrointestinal tumors.
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Table 1 Summary of pathways of METTL3 affecting glycolysis-related proteins

Tumor Modification

Protein model site

Effect

Result

GLUT!1 CRC 3'UTR

GLUT1 CRC SOX2 mRNA CDS Enhance the affinity of IGF2BP3 for m6A sites and

Enhance the affinity of IGF2BP2/3 for m6A sites

Enhanced stability and expression
levels of mRNA

Ubiquitinates GLUT1 and inhibits

activation of SOX2-IncRNA AC005392.2-GLUT]1 axis its degradation

HK2 CRC 5'73'UTR

LDHA CRC CDS

G6PD CRC LINCO1615
and G6PD pre-mRNA

PGAM1 CRC circQSOX1
NDUFA4 GC 3'UTR

Enhance the affinity of IGF2BP2 for m6A sites

Enhance the affinity of YTHDF1 for m6A sites
Inhibition of the interaction between hnRNPA1

Adsorption of miR-326/miR-330-5p
Enhance the affinity of IGF2BP1 for m6A sites

Enhanced stability and expression
levels of mRNA

Enhanced translation of LDHA

Improved the splicing efficiency
of G6PD pre-mRNA

Elevated levels of PGAM1

Enhanced stability and expression
levels of mMRNA

Notes: CRC: colorectal cancer; GC: gastric cancer.
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Table 2 Pathways of METTL3 affecting glycolysis-related
signaling pathways

Tumor Modified

model regulatory sites Szl ity

GC pri-miR-17-92 PTEN/PI3K/AKT

CRC  LINCO01559 miR-106-5p/PTEN/PI3K/AKT
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Table 3 Regulation of glycolytic protein expression by METTL3 through transcription-factor modulation

Transcription factor Tumor model

Effector pathway

Downstream effector protein

HDGF GC Nuclear HDGF binds to the promoters of GLUT4 and ENO2. GLUT4, ENO2
HIF-1a GC,CRC HIF-1a binds to the hypoxia response element (HRE) METTL3, GLUTI1, GLUTS3, etc.
in the promoter region.
HIF-1a CRC HIF-1a elevates mRNA levels and activates the promoter. LDHA
P53 GC GLUTI, GLUT3, GLUT4
Note: -: no data.
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